
ANovelNegative `1 PenaltyApproach forMultiuserOne-BitMassiveMIMODownlinkwithPSKSignaling
Zheyu Wu, Bo Jiang, Ya-Feng Liu, and Yu-Hong Dai

wuzy@lsec.cc.ac.cn, jiangbo@njnu.edu.cn, yafliu@lsec.cc.ac.cn, dyh@lsec.cc.ac.cn

Motivation

• Employing one-bit DACs at the base station (BS) can greatly reduce
the hardware cost and the energy consumption of a massive MIMO
system.

• Nonlinear precoding scheme exhibits significantly better performance
than linear precoding in the one-bit case.

� The classical minimum mean square error (MMSE) criterion
does not take advantage of symbol-level precoding.

� Constructive interference (CI)-based approaches generally per-
form better than MMSE-based approaches.

• Massive MIMO and symbol-level precoding impose high requirement
on the efficiency of the algorithms.

• State of the art CI-based algorithms:

� Suffer from an error rate floor (MSM [2, 3])

� Degrade in difficult cases (OPSU [4])

� Suffer from a high computational complexity (P-BB [4])

Main Contribution

• Develop a negative `1 penalty (NL1P) approach that achieves a bet-
ter tradeoff between the BER performance and the computational
efficiency:

� Propose an exact negative `1 penalty model for the original dis-
crete model

� Transform the penalty model into an equivalent min-max prob-
lem for which an efficient alternating optimization (AO) algo-
rithm is designed

System Model

• A multiuser system with one N -antenna BS and K single-antenna
users

• s = [s1, s2, . . . , sK ]T: the intended data symbol vector for the users,
where each si is drawn from M-PSK constellation

• H = [h1,h2, . . . ,hK ]T ∈ CK×N : the flat-fading channel matrix
between the BS and the users, with each element i.i.d. following
CN

(
0, 1

N

)
• n ∈ CK : the additive white Gaussian noise, with each element i.i.d.

following CN (0, 1)

• xT : transmitted signal vector from the BS that satisfies the one-bit
constraint, i.e., xT ∈ {±1± j}N

• The received signal vector y ∈ CK×1 can be expressed as

y = HxT + n.

Problem Formulation

• ŷk = hT
kxT : the noise-free received signal of user k

• sAk = ske
−j π

M , sBk = ske
j π
M : unit vectors parallel to the two decision

boundaries of sk

• Decompose ŷk along sAk and sBk as

ŷk = αAk s
A
k + αBk s

B
k .

• An illustration of the CI formulation for 8-PSK:

Figure 1: An illustration of the CI formulation.

• min{αAk , αBk } characterizes the distance between ŷk and the decision
boundary of sk.

• The symbol scaling model for one-bit precoding [3]:

max
xT

min
k∈{1,2,...,K}

{
αAk , α

B
k

}
s.t. hT

kxT = αAk s
A
k + αBk s

B
k , k = 1, 2, . . . , K, (1a)

xT (i) ∈ {±1± j} , i = 1, 2, . . . , N. (1b)

• An equivalent form in the real space:

min
x∈{−1,1}2N

max
l∈{1,2,...,2K}

aT
l x, (P)

where

� x = [R(xT )T, I(xT )T)]T

� al, l = 1, 2, . . . , 2K, are problem-dependent vectors.

NL1P Approach

• Basic idea: using the penalty approach and the homotopy technique
to solve the discrete model (P):

� Transform (P) into an equivalent continuous penalty model

� Gradually increase the penalty parameter and solve the corre-
sponding penalty model by taking care of its special structure

NL1P Approach (Cont.)

• Negative `1 penalty model: penalize the discrete one-bit constraint
into the objective with a negative `1-norm term, and relax the con-
straint to its convex hull:

min
x∈[−1,1]2N

max
l∈{1,2,...,2K}

aT
l x− λ‖x‖1. (Pλ)

� Exactness: when λ > maxl ‖al‖∞, (Pλ) is equivalent to (P)
both globally and locally.

• Min-max reformulation of (Pλ):

min
x∈[−1,1]2N

max
y∈∆

yTAx− λ‖x‖1, (P̂λ)

where ∆ = {y ∈ R2K | 1Ty = 1, y ≥ 0}, A = [a1, a2, . . . , a2K ]T.

• AO algorithm for solving (P̂λ): update x and y iteratively as follows
until some stopping criterion is satisfied:

xk+1∈ arg min
x∈[−1,1]n

yT
kAx− λ‖x‖1 +

τk
2
‖x− xk‖2 (2a)

yk+1= Proj∆(yk + ρkAxk+1 − ρkckyk), (2b)

where ρk ≥ 0, τk ≥ 0, and ck ≥ 0 are the algorithm parameters.

� (2a) admits a closed-form solution as

xk+1(i) = sgn(aik) min

{
|aik|+

λ

τk
, 1

}
, i = 1, 2, . . . , 2N,

where aik = xk(i)− AT
i yk
τk

and Ai is the i-th column of A.

� Convergence property: With properly selected parameters, every
limit point (x̂, ŷ) of {(xk,yk)} is a stationary point of (P̂λ).
Moreover, if λ > maxl ‖al‖∞, x̂ is a local minimizer of (Pλ)
and satisfies the one-bit constraint.

• The homotopy framework for solving (P): initialize λ with a small
value at the beginning, then gradually increase it and trace the solu-
tion path of the corresponding penalty problems, until λ is sufficiently
large and a one-bit solution is obtained.

• The pseudocodes of the proposed NL1P approach are given in Algo-
rithm 1.

Algorithm 1 Proposed NL1P Approach for Solving Problem (P)

Step 1 Input λ(0), δ > 1, x(0); set t = 1.
Step 2 Apply the AO algorithm to solve problem (Pλ) with parameter λ =
λ(t−1) and initial point x(t−1); let the solution be x(t).
Step 3 Stop if x(t) satisfies the one-bit constraint; otherwise, set λ(t) = δλ(t−1)

and t = t+ 1, go to Step 2.

Simulation Results

• Compare the proposed Algorithm 1 with

� Linear precoders: quantized and unquantized ZF precoders

� MMSE-based precoder: SQUID [1]

� CI-based precoders: MSM [2, 3], OPSU [4], and P-BB [4]

• Parameters setting:

� Algorithm 1: λ(0) = 0.001M
8

, δ = 5, and x(0) = 0

� the AO algorithm: ρk = ρ = 0.2
‖A‖2 , ck = 0.01

ρk0.05
, τk =

2 log2N+1
10

mean(|A|)k0.1, and y0 = 1
2K

1

• Stopping criterion for the AO algorithm: stop when the iteration
number is more than 500 or when the distance between successive
iterates is less than 10−3.

• Average over 103 channel realization
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Left: BER performance; Right: CPU Time.

• The CI-based approaches generally perform much better than the
MMSE-based SQUID approach and the quantized ZF approach.

• The proposed NL1P approach achieves a better tradeoff between the
BER performance and the computational efficiency than the state-
of-the-art CI-based algorithms.

� Compared to OPSU [4], NL1P performs better with a lower
computational cost.

� Compared to P-BB [4], NL1P is much more computationally
efficient with a little performance loss.
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