CLOSED-FORM SINGLE SOURCE DIRECTION-OF-ARRIVAL ESTIMATOR USING FIRST-ORDER RELATIVE HARMONIC COEFFICIENTS

OBJECTIVES

- All the existing relative harmonic coefficients (RHC) based direction-of-arrival (DOA) estimators suffer from resolution limitations, as they require searching over the DOA grid.
- This paper utilizes the first-order RHC to propose a closed-form DOA estimator by deriving a directional vector, which points towards to the desired source direction, thus circumventing the exhaustive search over directional space, while achieving equivalent localization accuracy.

Spherical Harmonics DECOMPOSITION

Figure 1: DOA estimation using a spherical microphone array.

Decomposed into the spherical harmonics domain, $P(\boldsymbol{x}_j, k) = \sum_{n=0}^{N} \sum_{m=-n}^{n} \alpha_{nm}(k) j_n(kr) Y_{nm}(\theta_j, \phi_j)$

 $\mathbf{1} \alpha_{nm}(\cdot)$: spherical harmonic coefficient $\mathbf{O}N = \lceil kr \rceil$: truncated order of soundfield $\mathfrak{S}_{j_n}(\cdot)$: spherical Bessel function of the first kind • $Y_{nm}(\cdot)$: spherical harmonic function

Yonggang Hu¹, Sharon Gannot²

¹ Audio and Acoustic Signal Processing Group, Australian National University, Canberra, Australia ² Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel

Relative Harmonic COEFFICIENTS (RHC)

We define the RHC of order n and mode m as:

 $\beta_{nm}(k) = \frac{\alpha_{nm}(k)}{\alpha_{00}(k)}.$

Analytically, the feature can be expressed as:

 $\beta_{nm}(k) = 2\sqrt{\pi}i^n Y^*_{nm}(\vartheta_s, \varphi_s).$

(3)For the first-order microphone array, our feature vector is,

$$\begin{bmatrix} 2\sqrt{\pi}iY_{1,-1}^*(\vartheta_s,\varphi_s), 2\sqrt{\pi}iY_{1,0}^*(\vartheta_s,\varphi_s), 2\sqrt{\pi}iY_{1,1}^*(\vartheta_s,\varphi_s) \end{bmatrix}^I, \\ \text{Several advantages:} \tag{4}$$

Several advantages:

• It is easily estimated under noisy conditions.

- source-signal invariant, frequency-**2**It 1Sindependent and solely dependent on the source position (e.g., DOA).
- 3 It can be used to derive a closed-form DOA estimator (see below).

A DIRECTIONAL VECTOR

Explicitly, the first-order RHC in (4) is,

$$\beta_{1,-1} = i\sqrt{3/2}\sin(\vartheta_s)e^{i\varphi_s}$$

$$= -\sqrt{3/2}\sin\vartheta_s\sin\varphi_s + i\sqrt{3/2}\sin\vartheta_s\cos\varphi_s$$

$$\beta_{1,0} = i\sqrt{3}\cos(\vartheta_s)$$

$$\beta_{1,1} = -i\sqrt{3/2}\sin(\vartheta_s)e^{-i\varphi_s}$$

$$= -\sqrt{3/2}\sin\vartheta_s\sin\varphi_s - i\sqrt{3/2}\sin\vartheta_s\cos\varphi_s.$$
(5)

Theorem: Denote the estimated first-order RHC as $\beta_{1,-1}$, $\beta_{1,0}$, and $\beta_{1,1}$. Derive the *direction vector*:

$$\bar{\boldsymbol{I}} = \begin{bmatrix} \operatorname{Im}\{\bar{\beta}_{1,-1} - \bar{\beta}_{1,1}\} \\ \operatorname{Re}\{\bar{\beta}_{1,-1} + \bar{\beta}_{1,1}\} \\ \operatorname{Im}\{\bar{\beta}_{1,0}\} \end{bmatrix} \otimes \begin{bmatrix} \sqrt{1/6} \\ -\sqrt{1/6} \\ \sqrt{1/3} \end{bmatrix}$$
(6)

Conclusion: If the estimated first-order RHC coefficients are equal to their analytical values, the directional vector Ipoints towards the source direction, i.e., (ϑ_s, φ_s) . (Please see the proof in the paper)

DIRECTIONAL VECTOR ESTIMATION PROCEDURE

The estimations of the directional vector comprise four steps:

• Measure the soundfield due to an unknown single sound source, and then transform the timedomain multichannel recordings into the shorttime Fourier transform domain.

• Decompose the multichannel STFT coefficients into the spherical harmonics domain and estimate the first-order spherical harmonic coefficients.

3 Extract the first-order RHC and then apply frequency-smoothing over a wide frequency band, as the RHC may slightly differ from the frequency-independence property.

• Substitute the smoothed first-order RHC into the closed-form operation in (6), and normalize, as the estimated direction vector may deviate from the unit-norm property, and finally obtain a practical direction vector.

ALGORITHM PROPERTIES

• Usability with other microphone arrays: the algorithm is independent of the specific microphone constellation provided the array facilitates firstorder spherical harmonics decomposition.

• Computational-efficiency: (i) we applied time averaging and frequency smoothing, respectively, thus circumventing the need to localize the source for each time-frequency bin; and (ii) closed-form solution circumvents the tedious grid search.

Table 2: Various reverberation levels (SNR = 10 dB).

SR/MAEE	Reverberation time (T_{60})		
Methods	$150 \mathrm{ms}$	$350 \mathrm{ms}$	$550 \mathrm{ms}$
Decoupled	$100\%/1.05^{\circ}$	$99\%/3.56^{\circ}$	$88\%/4.69^{\circ}$
Proposed	$100\%/0.97^{\circ}$	$99\%/3.26^{\circ}$	$93\%/4.62^{\circ}$

 $|SR/\overline{N}|$ SNF 15 $\overline{25}$

1 Baselines: (i) RHC-based decoupled DOA estimator [1] and (ii) the intensity-based method [2]. **2** Metrics: (i) success-ratio (SR/%) over the $M_{\rm tot} = 100$ cases and (ii) average mean absolute estimated error (\overline{MAEE}) over the successful cases. **3** Low-complexity: average time cost by the proposed method is 2.9 ms, while the decoupled approach takes 578 ms. See Figure 2 for tracking performance and more results in the paper. CONCLUSION

first-order relative harmonic coefficients. • Our algorithm achieves better localization accuracy and reduced complexity as compared with the baseline approaches.

1Y. Hu, et al. "Decoupled DOA Estimators using relative harmonic coefficients," in 2020 28th EUSIPCO, 246-250. **2**D. P. Jarrett, et al. "3D source localization in the spherical harmonic domain using a pseudointensity vector," in 2010 18th EUSIPCO, pp. 442-446.

EXPERIMENTAL RESULTS

Figure 2: DOA tracking using the proposed algorithm.

Table 1: Localization accuracy for various SNR levels.

MAEE	Localization methods			
a level	Intensity	Decoupled	Proposed	
dB	$82\%/3.54^{\circ}$	$100\%/0.35^{\circ}$	$100\%/0.33^{\circ}$	
dB	$98\%/1.21^{\circ}$	$100\%/0.17^{\circ}$	$100\%/0.12^{\circ}$	
dB	$100\%/0.33^{\circ}$	$100\%/0.15^{\circ}$	$100\%/0.07^{\circ}$	

1 Proposed a closed-form DOA estimator using the

REFERENCE