

UK | CHINA | MALAYSIA

Singapore

Paper ID: 2789

SPATIAL-CONTEXT-AWARE DEEP NEURAL NETWORK FOR MULTI-CLASS IMAGE CLASSIFICATION

Jialu ZHANG*†, Qian ZHANG*, Jianfeng REN*, Yitian ZHAO†, Jiang LIU*†‡

* School of Computer Science, University of Nottingham Ningbo China
 † Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences
 ‡ Department of Computer Science and Engineering, Southern University of Science and Technology

• Single-label VS Multi-label

A CONTRACT		
		alle
23		
bredt (berinners)	Hard Change Alexand	

Single-label	airplane	buildings	cat		
Multi-label	clouds, airplane, sky	buildings, clouds, plants, reflection, sky	animal, cat, grass		

Applications

- Image retrieving
- Scene recognition
- Image captioning, etc.

• Existing Solutions

南方种技大学

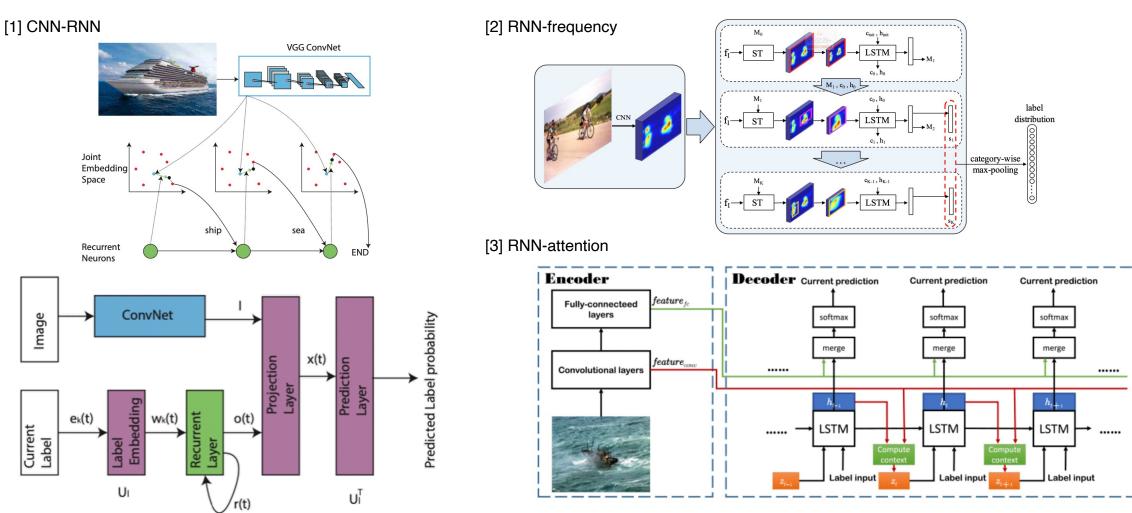
- Traditional approaches
 - a. Hand-crafted features, SIFT, GIST, HOG etc.
 - b. SVM, Tree-based approaches, Bayesian etc.
- Deep learning approaches
 - a. Approaches that exploit label inter-dependencies
 - a) RNN-based methods
 - b) GNN-based methods
 - c) Latent space
 - b. 2-stage pipeline approaches that utilize the spatial information of objects (region proposal generation & region labeling)

Introduction —— Multi-label image classification

University of Nottingham

南方科技大学

- Cicassp 2022 Singapore
- Approaches that exploit label inter-dependencies —— RNN-based methods



J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, W. Xu, CNN-RNN: A unified framework for multi-label image classification, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2285-2294.
 F. Lyu, Q. Wu, F. Hu, Q. Wu, M. Tan, Attend and imagine: Multi-label image classification with visual attention and recurrent neural networks, IEEE Trans. Multimedia 21 (2019) 1971-1981
 Z. Wang, T. Chen, G. Li, R. Xu, L. Lin, Multi-label image recognition by recurrently discovering attentional regions, in: Proc. IEEE Int. Conf. Comput. Vis., 2017.

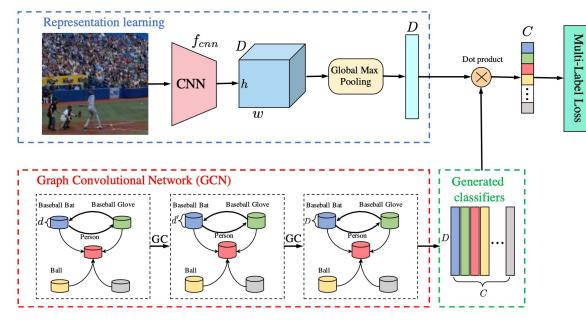
Introduction — Multi-label image classification

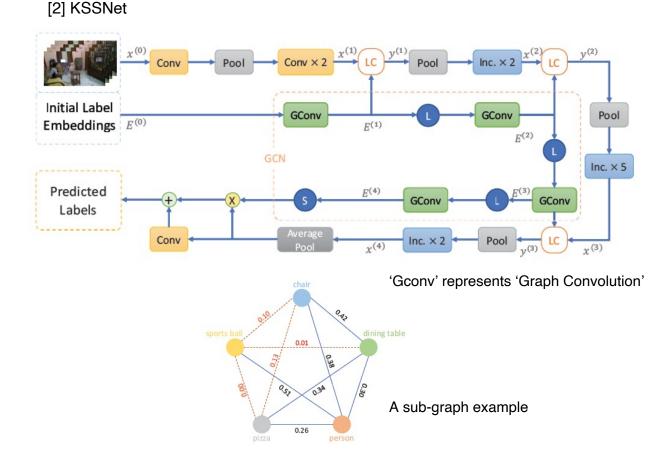
Approaches that exploit label inter-dependencies —— GNN-based methods

[1] ML-GCN

University of Nottingham

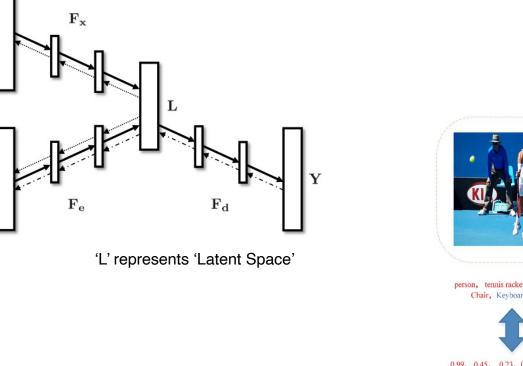
有方种技大学





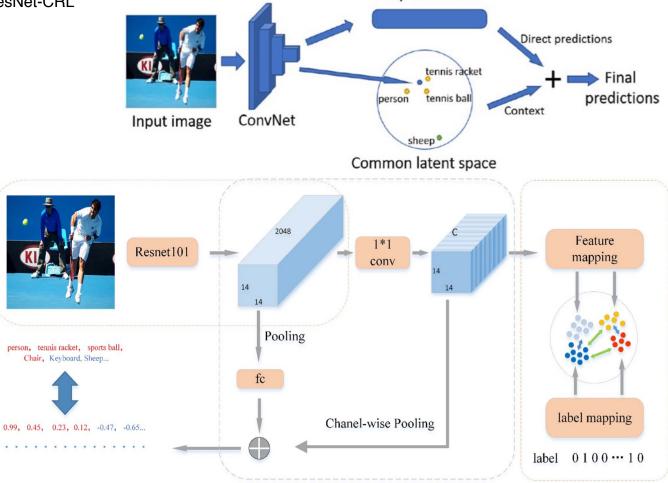
[1] Z. Chen, X. Wei, P. Wang, Y. Guo, Multi-label image recognition with graph convolutional networks, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 5172-5181. [2] Y. Wang, D. He, F. Li, X. Long, Z. Zhou, J. Ma, S. Wen, Multi-label classification with label graph superimposing, Proc. AAAI Conf. Artif. Intell. 34 (2020) 12265-12272.

(1) C2AE [2] ResNet-CRL



X

Y



[1] C.-K. Yeh, W.-C. Wu, W.-J. Ko, Y.-C. F. Wang, Learning deep latent space for multi-label classification, in: Proc. AAAI Conf. Artif. Intell., Vol. 31, 2017.
[2] S. Wen, W. Liu, Y. Yang, P. Zhou, Z. Guo, Z. Yan, Y. Chen, T. Huang, Multilabel image classification via feature/label co-projection, IEEE Trans. Syst. Man Cybern.: Syst.

• Existing Solutions

南方种技大学

- Traditional approaches
 - a. Hand-crafted features, SIFT, GIST, HOG etc.
 - b. SVM, Tree-based approaches, Bayesian etc.
- Deep learning approaches
 - a. Approaches that exploit label inter-dependencies
 - a) RNN-based methods
 - b) GNN-based methods
 - c) Latent space
 - b. 2-stage pipeline approaches that utilize the spatial information of objects (region proposal generation & region labeling)

Introduction — Multi-label image classification

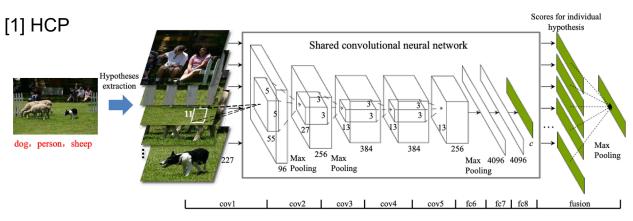
• 2-stage pipeline approaches

University of Nottingham

有方种技大学

[3] ProNet

Region proposal generation & Region labeling



Yes!

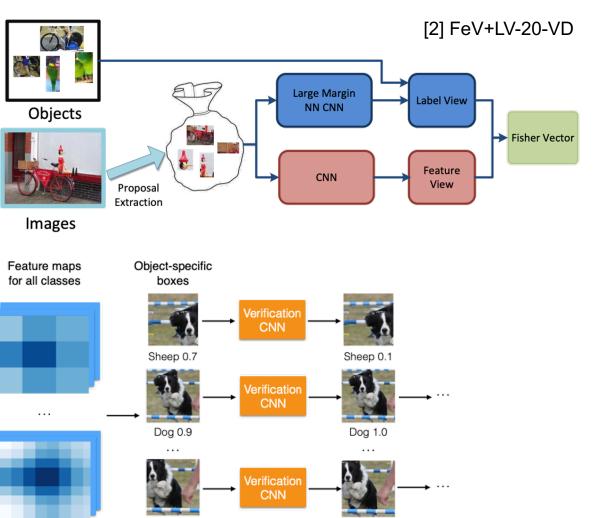
Yes!

Probably

No

Probably

otted plant



Person 0.6

Person 0.4

[1] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao, S Yan, CNN: Single-label to multi-label, arXiv preprint arXiv:1406.5726.

Test image

[2] H. Yang, J. Tianyi Zhou, Y. Zhang, B.-B. Gao, J. Wu, J. Cai, Exploit bounding box annotations for multi-label object recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016.
[3] C. Sun, M. Paluri, R. Collobert, R. Nevatia, L. Bourdev, ProNet: Learning to propose object-specific boxes for cascaded neural networks, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

Multi-scale

FCN

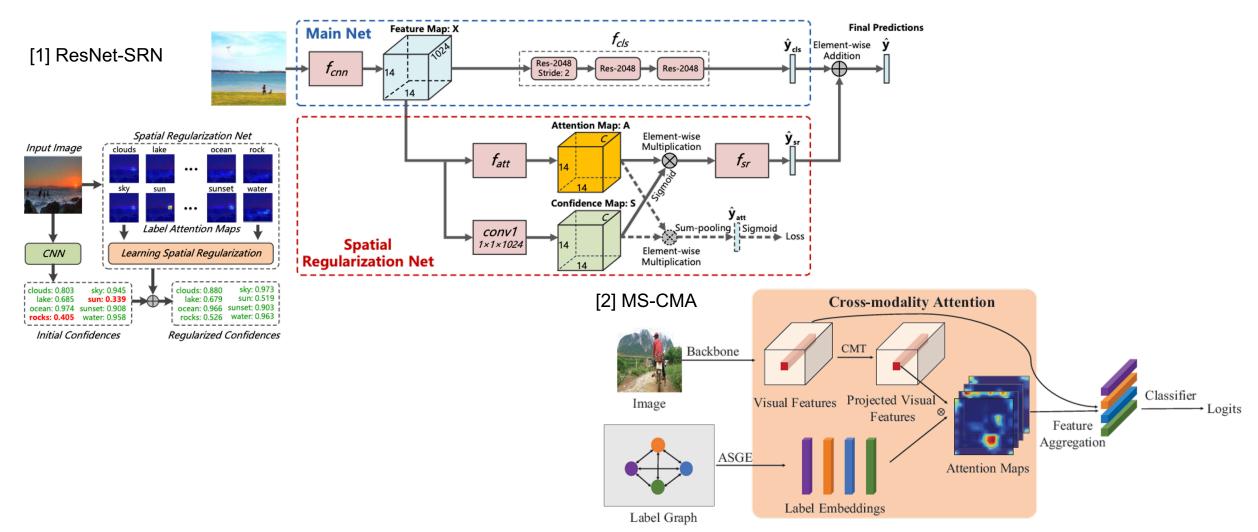
Introduction — Multi-label image classification

Gicassp 2022 Siagapore

• 2-stage pipeline approaches – 'attention map' techniques

University of Nottingham

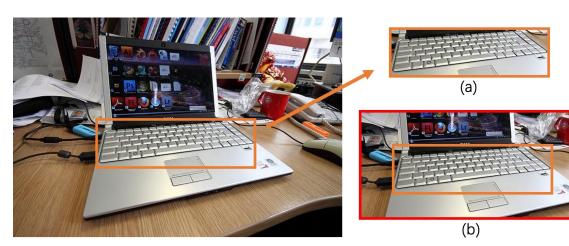
南方种技大学



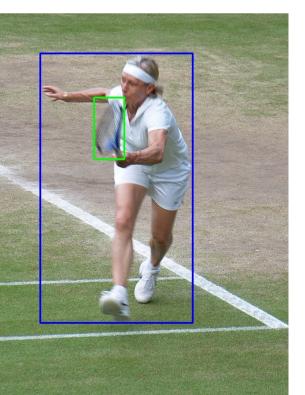
[1] F. Zhu, H. Li, W. Ouyang, N. Yu, X. Wang, Learning spatial regularization with image-level supervisions for multi-label image classification, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 5513-5522. [2] R. You, Z. Guo, L. Cui, X. Long, Y. Bao, S. Wen, Cross-modality attention with semantic graph embedding for multi-label classification, Proc. AAAI Conf. Artif. Intell. 34 (2020) 12709-12716.

Existing problem

The background context is considered harmful to the object detection due to the increase of the intra-class variations, and hence totally removed.



cup, laptop, mouse, <u>keyboard</u>, book



(a)

(b)

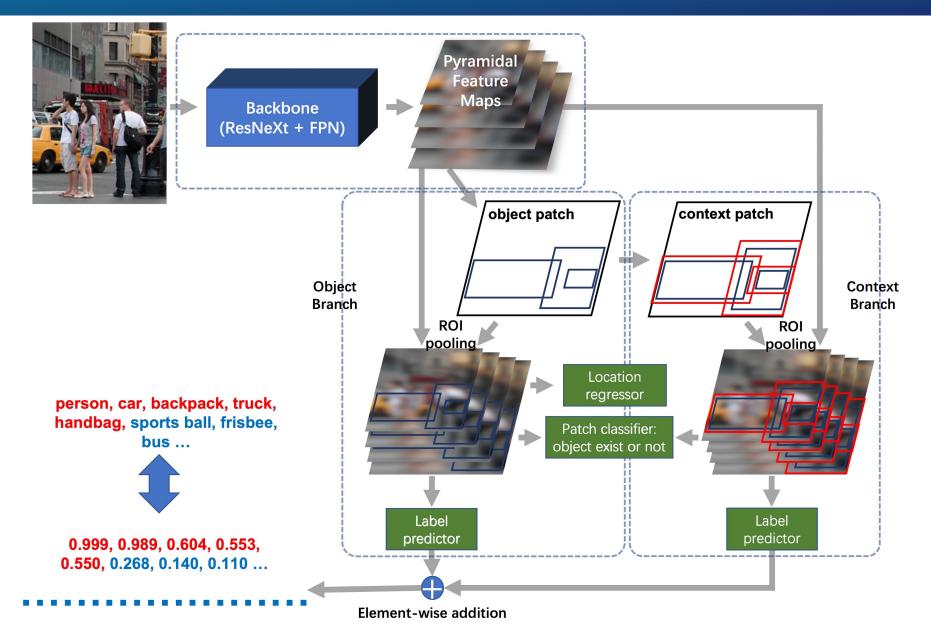
 To make use of the spatial and context information to the object, a twobranch spatial-context-aware deep neural network is proposed for multi-label image classification problem.

2. The proposed image-context-aware branch could well exploit both spatial and semantic information of objects.

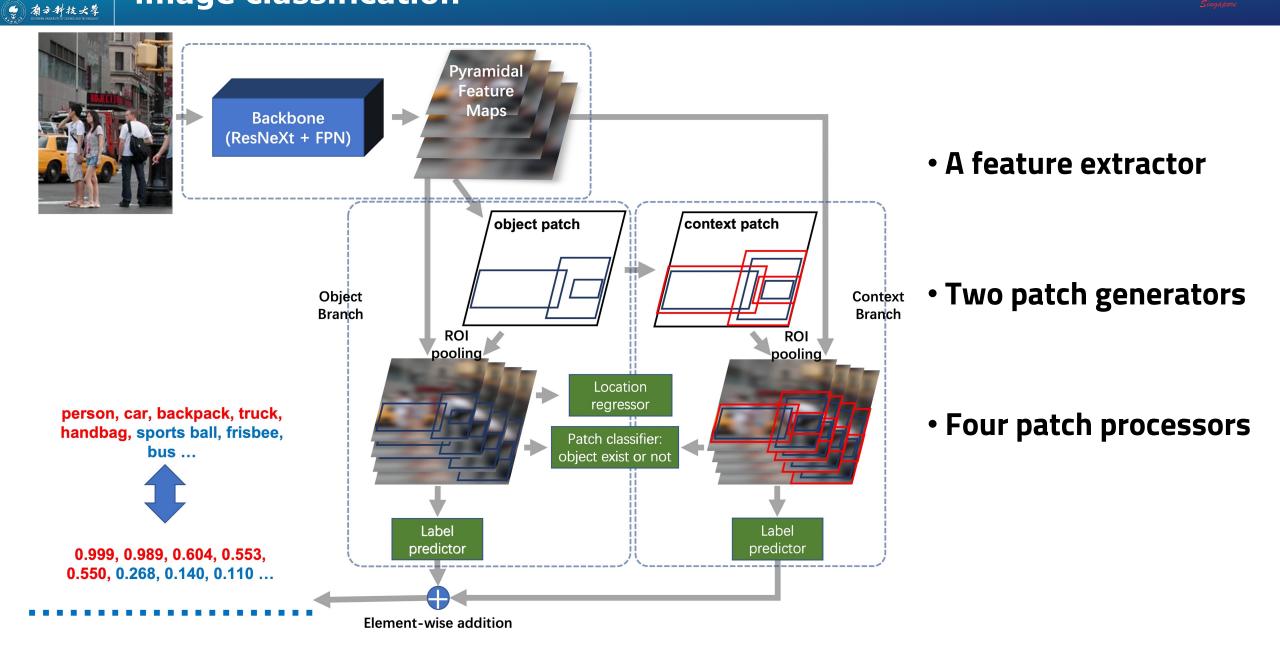
3. The proposed approach significantly outperforms the state-of-the-art approaches on the MS-COCO dataset and PASCAL VOC dataset.

University of Nottingham

南方种技大学

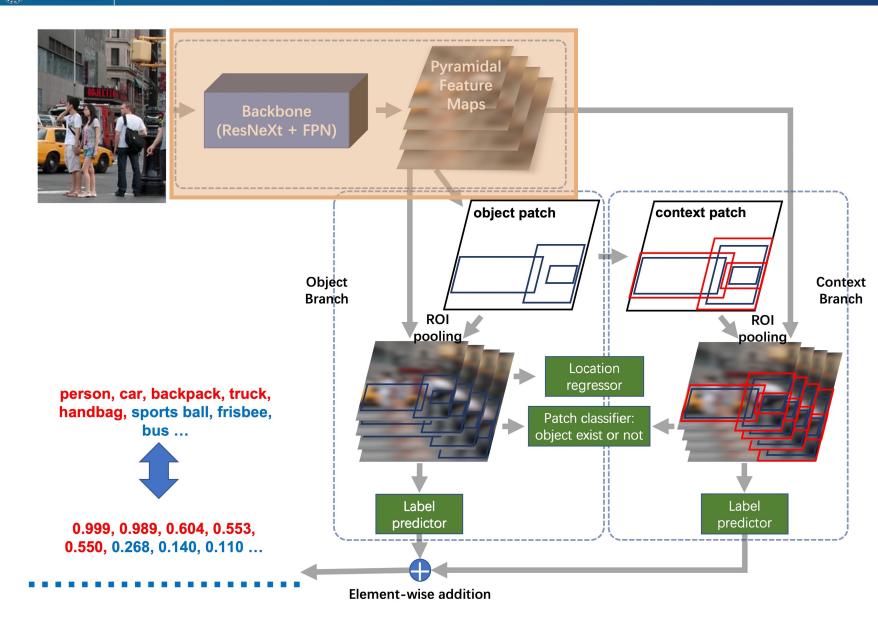


University of Nottingham



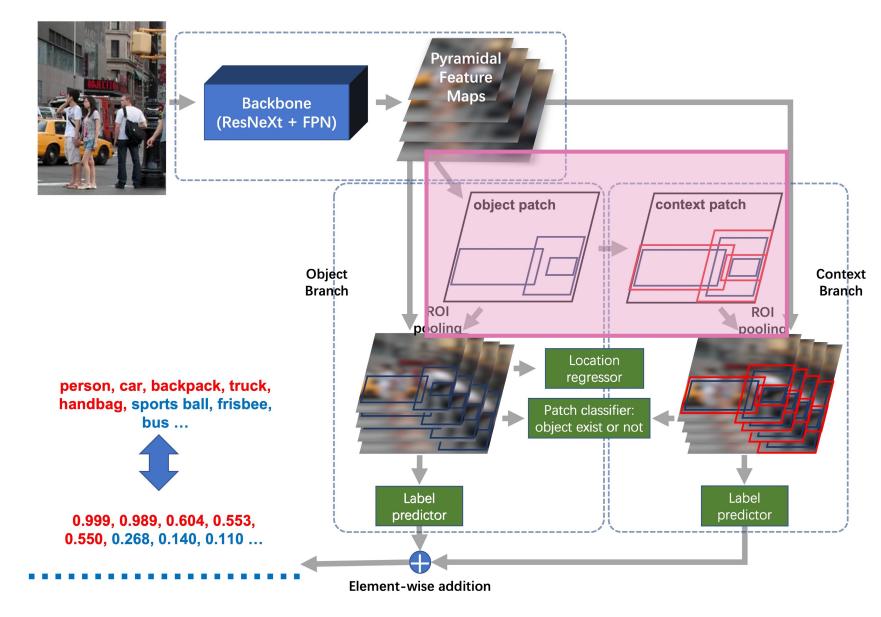
University of Nottingham UKI CHINA I MALAYSIA

Spatial-context-aware deep neural network for multi-label image classification



ResNeXt-101 followed by FPN is utilized as the feature extractor. The former aggregates a set of transformations to improve the classification capabilities of deep neural networks, and the latter employs the pyramid representations to extract a rich visual semantic abstract. The last pooling and classification layers in ResNeXt-101 are removed and the feature maps from the last convolutional layer are used as the input of FPN. A 4-stage semantic feature pyramid is built in FPN from high to low resolution.

```
\mathbf{X} = f_F(f_R(\mathbf{I};\theta_R);\theta_F)
```

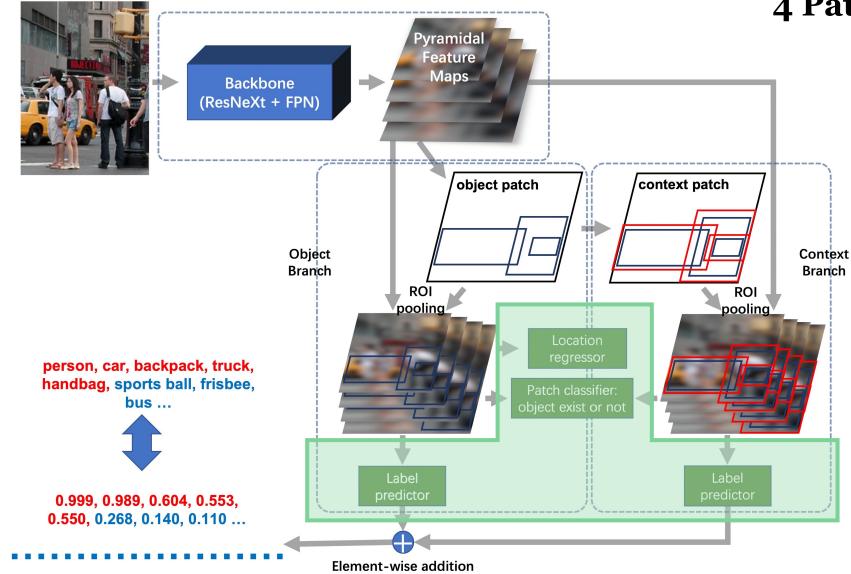
University of

Nottingham

方科技大学

2 Patch Generators:

- 1. One is used to generate tightly cropped bounding boxes that contain the most discriminant information for classifying objects in the object branch
- 2. One is responsible for generating expanded image patches that containing both the object and additional contextual information in the context branch



^{University of} Nottingham

南方种技大学

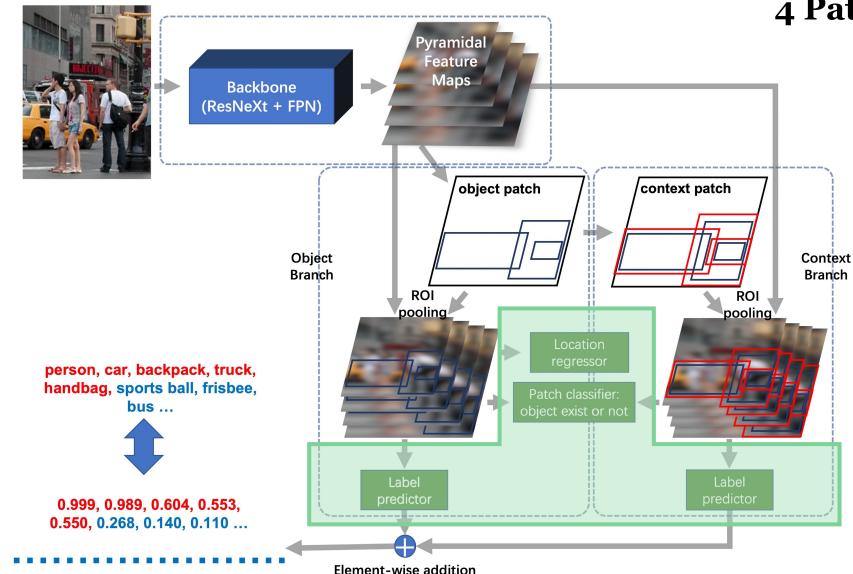
4 Patch Processors:

1. Location regressor, designed to accurately <u>locate the objects</u> to explore and utilize the image-level spatial information of different labels.

It is guided by the location regression loss L_r . The objective is to maximize the intersection over union (IOU) between the generated bounding boxes and the ground-truth bounding boxes.

$$L_r(\hat{t}_i, t_i^*) = \sum_{i \in \{x, y, w, h\}} \phi(\hat{t}_i - t_i^*)$$

 $\phi(x) = \begin{cases} 0.5x^2 & if|x| < 1\\ |x| - 0.5 & otherwise \end{cases}$



University of Nottingham

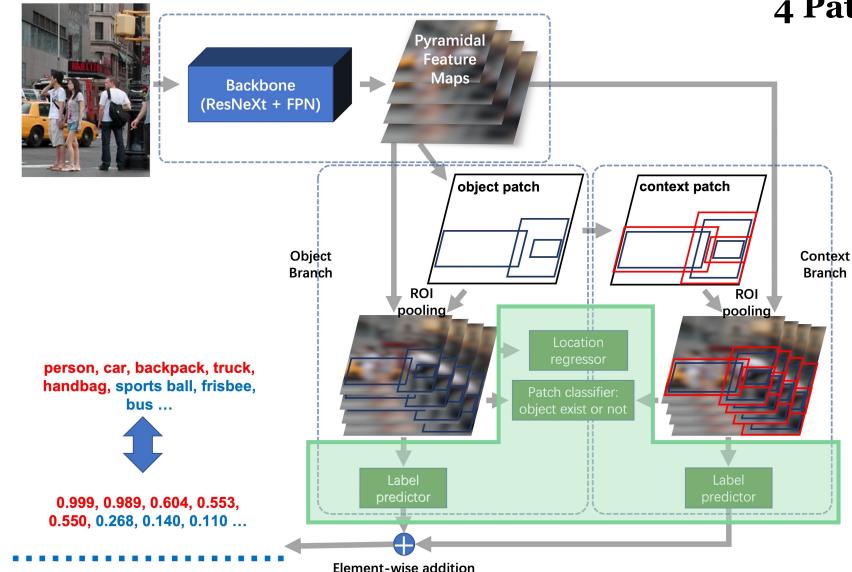
南方种技大学

4 Patch Processors:

2. Patch classifier, determines the confidence whether an object exists in the bounding box. Hence it is a binary classification problem. The cross-entropy loss is used to guide the training process

$$L_{p}(\hat{p}, p^{*}) = -p^{*} \log \hat{p} + (1 - p^{*}) \log(1 - \hat{p})$$

- \hat{p} predicted confidence score
- p^* ground-truth label



University of

南方种技大学

Nottingham

4 Patch Processors:

1. 2 Label predictors, designed to determine which object the bounding box contains.

These two dense networks are trained by using the binary cross-entropy (BCE) loss, which can exploit label dependencies in the multi-labelling tasks

$$L_l(\hat{\mathbf{y}}, \mathbf{y^*}) = \sum_{i=1}^C \left(y^i \log \sigma \hat{y}^i + (1 - y^i) \log(1 - \sigma \hat{y}^i) \right)$$

- $\hat{\mathbf{y}}$ predicted score over all possible labels
- \hat{y}^i predicted score of the *i*-th category
- σ weighting factor

DATASET

- Microsoft COCO 2017
 - Train 82,783
 - Test 40,504
 - 80 categories
 - ≈ 2.9 labels/image
- PASCAL VOC 2007
 - Train/Val 5011
 - Test 4952
 - 20 categories
 - ≈ 1.4 labels/image

Evaluation Metrics

- Mean Average Precision (mAP)
- Macro Precision (P-C)
- Macro Recall (R-C)
- Macro F1 (F1-C)
- Micro Precision (P-O)
- Micro Recall (R-O)
- Micro F1 (F1-O)

1 Wilersity of Nottingham Wilerinal Malarsia の ないの計技大学

Spatial-context-aware deep neural network for multi-label image classification —— Experimental Results on COCO

Method	mAP	F1-C	P-C	R-C	F1-O	P-O	R-O
CNN-RNN (CVPR, 2016)	61.2	60.4	66.0	55.6	67.8	69.2	66.4
ResNet101 (CVPR, 2016)	75.2	69.5	80.8	63.4	74.4	82.2	68.0
RNN-Attention (ICCV, 2017)	-	67.4	79.1	58.7	72.0	84.0	63.0
ResNet101-SRN (CVPR, 2017)	77.1	71.2	81.6	65.4	75.8	82.7	69.9
RNN-frequency (TMM, 2019)	64.7	-	-	-	-	-	-
DELTA (PR, 2019)	71.3	-	-	-	-	-	-
ResNet101-ACfs (CVPR, 2019)	77.5	72.2	77.4	68.3	76.3	79.8	73.1
DecoupleNet (ICASSP, 2019)	82.2	76.3	83.1	71.6	79.5	84.7	74.8
ML-GCN (CVPR, 2019)	83.0	78.0	85.1	72.0	80.3	85.8	75.4
ResNet101-CRL (TSMC-S, 2020)	81.1	75.8	81.2	70.8	78.1	83.6	73.3
KSSNet (AAAI, 2020)	83.7	77.2	84.6	73.2	81.5	87.8	76.2
MS-CMA (AAAI, 2020)	83.8	78.4	82.9	74.4	81.0	84.4	77.9
WSL-GCN (PR, 2021)	84.8	-	-	-	-	-	-
C-Tran (CVPR, 2021)	85.1	79.9	86.3	74.3	81.7	87.7	76.5
The Proposed	86.0	80.3	84.0	77.5	83.2	85.9	80.6

University of Nottingham 以に CHINA I MALAYSIA

Spatial-context-aware deep neural network for multi-label image classification —— Experimental Results on PASCAL

Method	areoplane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	diningtable
CNN-RNN (CVPR, 2016)	96.7	83.1	94.2	92.8	61.2	82.1	89.1	94.2	64.2	83.6	70.0
ResNet101 (CVPR, 2016)	99.5	97.7	97.8	96.4	65.7	91.8	96.1	97.6	74.2	80.9	85.0
RNN-Attention (ICCV, 2017)	98.6	97.4	96.3	96.2	75.2	92.4	96.5	97.1	76.5	92.0	87.7
RNN-frequency (TMM, 2019)	97.0	92.5	93.8	93.3	59.3	82.6	90.6	92.0	73.4	82.4	76.6
DELTA (PR, 2019)	98.2	95.1	95.8	95.7	71.6	91.2	94.5	95.9	79.4	92.5	85.6
ML-GCN (CVPR, 2019)	99.5	98.5	98.6	98.1	80.8	94.6	97.2	98.2	82.3	95.7	86.4
ResNet-CRL (TSMC-S, 2020)	99.9	98.4	97.8	98.8	81.2	93.7	97.1	98.4	82.7	94.6	87.1
WSL-GCN (PR, 2021)	99.7	98.5	99.0	97.8	86.2	96.2	98.3	99.3	81.1	95.9	88.0
The Proposed	99.4	98.8	98.0	98.6	90.5	98.3	98.6	98.4	81.3	96.2	88.6
	dog	horse	motorbike	person	pottedplant	sheep	sofa	train	tvmonitor	mAP	
CNN-RNN (CVPR, 2016)	92.4	91.7	84.2	93.7	59.8	93.2	75.3	99. 7	78.6	84.0	
ResNet101 (CVPR, 2016)	98.4	96.5	95.9	98.4	70.1	88.3	80.2	98.9	89.2	89.9	
RNN-Attention (ICCV, 2017)	96.8	97.5	93.8	98.5	81.6	93.7	82.8	98.6	89.3	91.9	
RNN-frequency (TMM, 2019)	92.4	94.2	91.4	95.3	67.9	88.6	70.1	96.8	81.5	85.6	
DELTA (PR, 2019)	96.7	96.8	93.7	97.8	77.7	95.0	81.9	99.0	87.9	91.1	
ML-GCN (CVPR, 2019)	98.2	98.4	96.7	99.0	84.7	96.7	84.3	98.9	93.7	94.0	
ResNet-CRL (TSMC-S, 2020)	98.1	97.6	96.2	98.8	83.2	96.2	84.7	99.1	93.5	93.8	
WSL-GCN (PR, 2021)	99.2	98.6	97.1	99.4	85.0	97.5	84.3	99.0	94.0	94.7	
The Proposed	96.7	98.6	99.0	99.3	87.0	97.5	87.3	98.6	95. 7	95.3	

じいiversity of Nottingham に I CHINA I MALAYSIA

Spatial-context-aware deep neural network for multi-label image classification —— Qualitative Results

person, <u>bottle</u>

bottle, dining table, chair, **potted plant**

person, parking meter, umbrella, <u>dining</u>

person, boat, dog

person, <u>toothbrush</u> bottle, <u>knife</u>, spoon, sandwich, dining table

person, **handbag**, **teddy bear**

bottle, dining table, person

1. The trade-off between adding contextual information and increasing intra-class variations need to be balanced.

2. Context information is important for multi-labeling, however, only the object-tobackground context is utilized in this work. Relations between objects, i.e., the object-to-object information, is not fully exploited.

University of Nottingham

THANK YOU