

Peilun Du, Xiaolong Zheng, Liang Liu, Huadong Ma Beijing Key Lab of Intelligent Telecomm. Software and Multimedia, Beijing University of Posts and Telecomm.

Introduction

Background

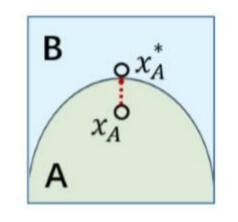
✓ Adversarial training methods defend against universal adversarial perturbation (UAP) by injecting corresponding adversarial samples during training.

✓ Training with UAP inevitably includes excessive perturbations related to other categories.

✓ High training cost hinders the application of adversarial training.

Observation

✓ Training with UAP will cause more erroneous predictions with larger local positive curvature.



(a) Desired sample x_A^* closes to the decision boundary.

✓ The geometric argument demonstrate the excessive perturbations.

training.

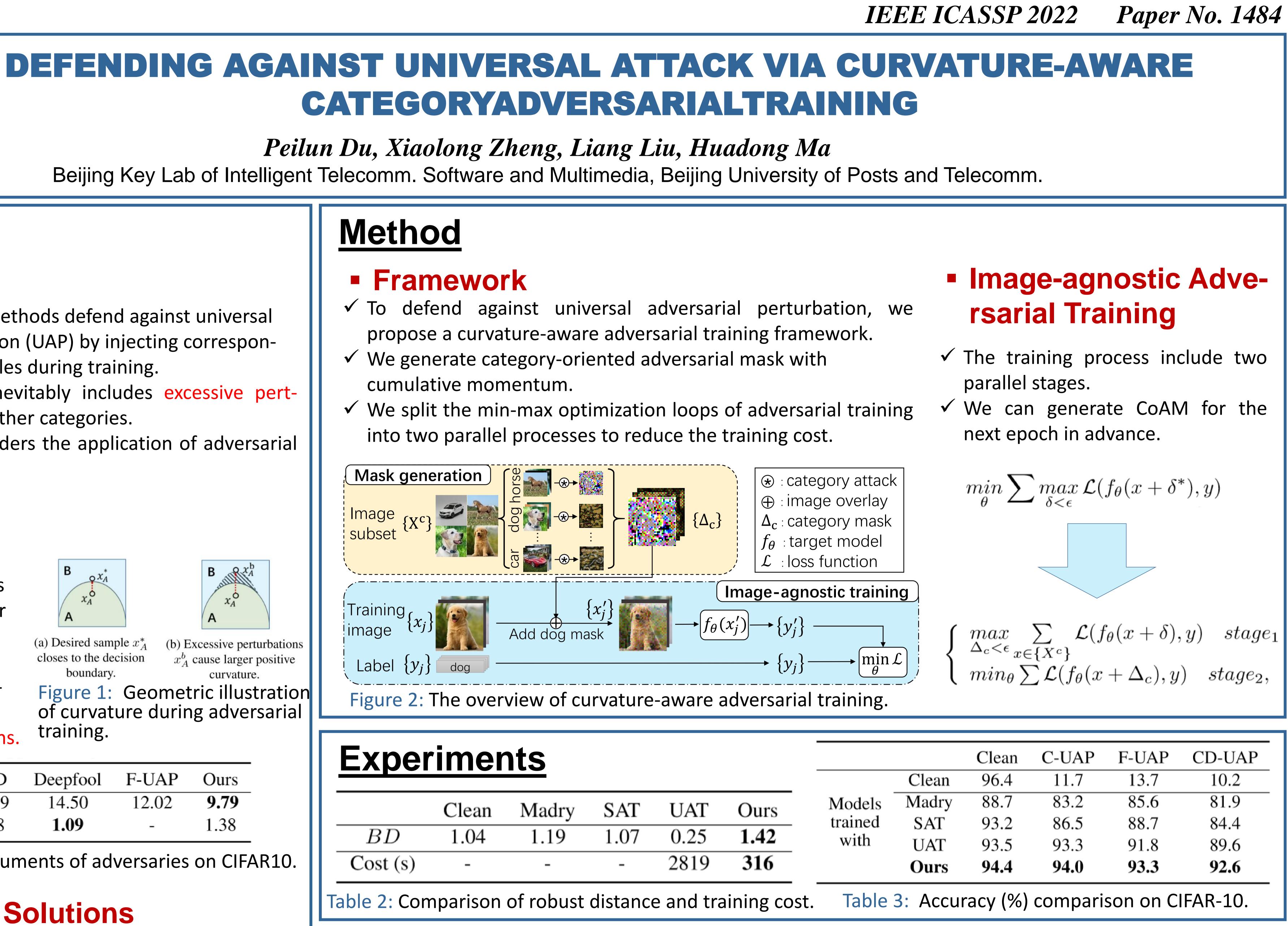
-		FGSM	PGD	Deepfool	F-U
-	RC	10.56	11.79	14.50	12
	BD	1.68	1.48	1.09	

Table 1: Geometric arguments of adversaries on CIFAR10.

Challenges & Solutions

Excessive perturbations of training samples Solution: Category-oriented adversarial mask **Local positive curvature of decision boundary** Solution: Curvature-aware adversarial training ✓ High training cost Solution: Splitting the min-max optimization loops

CATEGORYADVERSARIALTRAINING



Conclusion

- reduce the training cost.

We analyze the geometric arguments of adversaries in existing adversarial training on CIFAR10. We propose a curvature-aware adversarial training framework which trained with CoAM. We utilize a parallel training method by splitting the min-max optimization loops of adversarial training to