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Abstract

This work studies the effect of combination poli-
cies on the performance of adaptive social learn-
ing. We proved that in the slow adaptation
regime, combination policies with a uniform Per-
ron eigenvector will provide the smallest steady-
state error probability. Moreover, we estimate
the adaptation time of adaptive social learning in
the small signal-to-noise regime and show that in
this regime, the influence of combination policies
on the adaptation time is insignificant.

Introduction

Adaptive social learning [1] is an inference process
over multi-agent networks. The basic setup of a so-
cial learning network of N agents is:
•Local observations: ξk,i ∈ Xk for each agent k at
each time instant i
•Local likelihood models: {Lk(·|θ)} parameterized
by a hypothesis θ
•Finite hypothesis set: Θ = {θ0, . . . , θH−1}
•Global inference task: learning the true state θ∗
in Θ that best explains the local observations.

To infer the true model using adaptive social learn-
ing, each agent k holds a local belief vector µk,i,
which represents a probability mass function over
the set of hypotheses Θ. The adaptive social learn-
ing (ASL) algorithm [1] is described by:

ψk,i(θ) =
µ1−δ
k,i−1(θ)Lδk(ξk,i|θ)∑

θ′∈Θµ
1−δ
k,i−1(θ′)Lδk(ξk,i|θ′)

(1)

µk,i(θ) = exp ∑
`∈Nk

a`k logψ`,i(θ)∑
θ′∈Θ exp ∑

`∈Nk
a`k logψ`,i(θ′)

(2)

The combination policy A = [a`k] satisfies
A>1 = 1, a`k > 0, ∀` ∈ Nk (3)

and a`k = 0 for ` /∈ Nk, where 1 denotes the N -
dimensional vector of all ones. The Perron eigenvec-
tor π of matrix A has strictly positive entries,
Aπ = π, 1>π = 1, π` > 0, ∀` = 1, 2, . . . , N. (4)

Learning Performance of the ASL Algorithm

• Steady-state learning accuracy: In the
slow adaptation (i.e., with small δ) regime, the
steady-state error probability pk of agent k decays
exponentially with 1/δ:

pk ' e−Φ/δ, (5)
where the notation' denotes equality to the lead-
ing order in the exponent as δ goes to zero. The
decaying rate Φ is also called error exponent.

• Adaptation ability: The adaptation time Tadap of
the adaptive social learning is defined as the critical time
instant i after which the instantaneous error probability
pk,i of agent k decays with an error exponent (1− ε)Φ for
some small ε > 0:

pk,i ≤ e−
1
δ[(1−ε)Φ+O(δ)], (6)

where the notation O(δ) signifies that the ratio O(δ)/δ
stays bounded as δ → 0.

• Error Exponent: Let xk,i(θ) , log Lk(ξk,i|θ0))
Lk(ξk,i|θ) and Λk(t; θ) , logE[exp(txk,i(θ))]. The error exponent

Φ is expressed as
Φ = min

θ 6=θ0

− inf
t∈R

∫ t

0

Λave(τ ; θ)
τ

dτ

 (7)

where Λave(t; θ) , ∑N
k=1 Λk(πkt; θ).

Role of the Combination Policy

Theoretical Result 1: Maximizing the Error Exponent

The maximum error exponent of the steady-state error probability is achieved when the Perron eigenvector
is uniform, i.e.,

1
N
1 ∈ arg max

π
Φ s.t. 1>π = 1 and π` > 0, ∀` = 1, 2, . . . , N. (8)

Theoretical Result 2: Minimizing the Adaptation Time

Consider the uniform initial belief condition and the small signal-to-noise ratio (SNR) regime [2], then the
adaptation time Tadap can be approximated as

Tadap ≈
log(1−

√
1− ε)

log(1− δ)
(9)

for any combination policy.

Concluding Remarks

•The largest error exponent can be achieved when
the Perron eigenvector is uniform. Therefore, a
doubly-stochastic combination policy will be
beneficial for improving the steady-state learning
accuracy.
•The combination policy plays a minor role in the
adaptation time of the adaptive social learning
when the SNR between hypotheses is small. It is
then reliable to employ a combination policy with
better steady-state learning accuracy in the small
SNR regime.
•The results obtained in this work are based on
the assumption that the likelihood model of the
true state is accurate. The optimal combination
policies for the generalized likelihood models have
been established in our extended version [3].
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Simulation Results

Consider a 10-agent network. The agents will perform a
social learning protocol with 3 hypotheses and Laplacian
likelihood models. We consider 5 left-stochastic combina-
tion policies and 5 doubly-stochastic ones. The perfor-
mance of adaptive social learning under different combi-
nation policies is investigated, both for the stationary and
non-stationary environments. 10 20 30 40 50 60 70 80 90 100
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