Using Multi-talker Neural TTS to Synthesize Speech for Dysarthric Speech Recognition

Mohammad Soleymanpour¹, Michael T. Johnson¹, Rahim Soleymanpour², Jeffrey Berry³

¹ University of Kentucky, Lexington, KY, USA

² University of Connecticut, Storrs, CT, USA

³ Marquette University, Milwaukee, WI, USA

OUTLINE:

Introduction

Multi-talker Neural TTS to Synthesize Speech

Experiments

Results and Discussion

Conclusion

INTRODUCTION:

Dysarthria and Severity Level

Problem: Challenges of Dysarthric ASR

3

Aim of this project

Solution: Dysarthric Speech Augmentation/Synthesis

NTRODUCTION:

- **TORGO** dataset:
- **TORGO**, dysarthric database with aligned
 - acoustic/articulatory.
- □ 15 speakers
 - 8 Dysarthric: 5 males, 3 females
 - □ 7 control: 4 males, 3 females
- □ The dataset contains about 23 hours.

Severity Level	Intelligibility Category	Speaker ID
		FC01
		FC02
Normal		FC03
	Intelligible	MC01
		MC02
		MC03
	MC04	
		F03
Very low		F04
		M03
Low		F01
LOW		M05
	Unintelligible	M01
Medium		M02
		M04

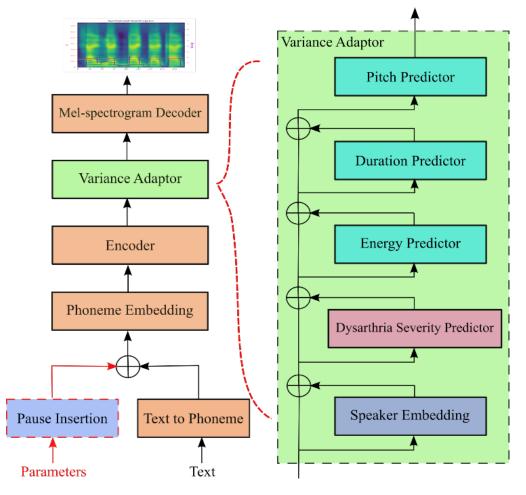
INTRODUCTION:

Required Parameters: Pitch, Duration, Energy, Pause, Severity level

Aim to improve multi-speaker end-to-end TTS systems to synthesize dysarthric speech

Advantages of this work?

Evaluation: DNN-HMM based ASR models and audio samples at our demo page


USING MULTI-TALKER NEURAL TTS TO SYNTHESIZE SPEECH:

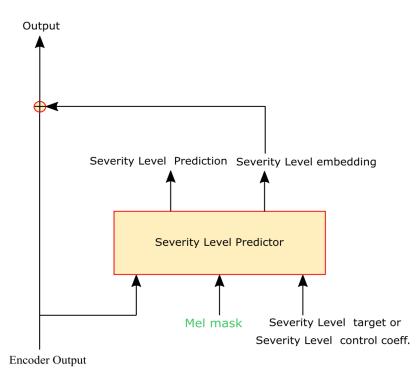
Adjusted Model:

- Contains 4 feed-forward transformer blocks in the encoder and decoder.
- □ The decoder generates an 80-dimensional mel-spectrogram from hidden state.
- □ The size of phoneme embedding is 256.
- Trained the adjusted model with a GeForce RTX 2080 Ti.

Predictors:

- □ 2-layer 1D-convolutional network
- Each followed by a normalization and a dropout layer,
- An extra linear layer to project the hidden states into the output sequence.

An overview of the proposed architecture

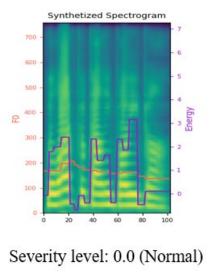


6

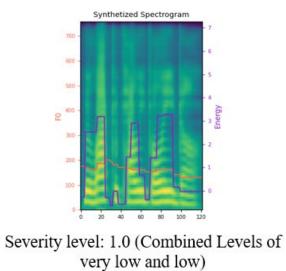
USING MULTI-TALKER NEURAL TTS TO SYNTHESIZE SPEECH:

Dysarthric Severity Predictors:

- □ 2-layer 1D-convolutional network
- Each followed by the layer normalization and a dropout layer,
- An extra linear layer to project the hidden states into the output sequence.



An overview of Dysarthric Severity Predictors



University of Kentucky.

USING MULTI-TALKER NEURAL TTS TO SYNTHESIZE SPEECH:

Input text: "We would like to paly volleyball"

Severity level: 2.0 (Moderate)

Effect of dysarthria severity coefficients in synthesizing dysarthric speech for speaker MC04

Demo page: <u>https://mohammadelc.github.io/SpeechGroupUKY/</u>

EXPERIMENT FOR DYSARTHRIC SPEECH RECOGNITION:

- Exp.1 included augmented speech across 3 severities with pause insertion.
- Exp.2 included augmented speech across severity, pause, pitch, energy, and duration.
- For ASR, Pytorch-kaldi is used to the train model.
- A light Gated Recurrent Unit (liGRU) architecture
- is implemented with fMLLR transformed features.
- For testing, a leave-one-speaker-out crossvalidation procedure was applied.

The prosody coefficients for synthesizing dysarthric speech in the two experiments

Baseline	Exp. 1	Exp. 2
-	1.0	[0.1, 0.6, 1.2, 1.75]
-	1.0	[0.1, 1.0, 2.0]
-	1.0	[1.0, 1.3, 1.6, 1.8]
-	[0.0, 1.0, 2.0]	[0.0, 1.0, 2.0]
-	Yes	Yes
~ 16000	~×3	$\sim \times 10$
	- - - - -	- 1.0 - 1.0 - 1.0 - [0.0, 1.0, 2.0] - Yes

RESULTS AND DISCUSSION:

- In the first experiment that only used severity synthesis and pause insertion, the synthesized speech used for augmenting ASR training improved from 44.5% to 41.6%.
- In the second experiment, average WER performance across all speakers improved from 44.5% to 39.2%.
- On average, the first and second experiments reduced WER by 6.5 %, 12.2% with the respect to the baseline.

WER of each test speaker for the two augmentation experiments

tin the respect to	10104	05.
	M05	58.
	Overall Average	44.

and the second second		· · · · · · · · · · · · · · · · · · ·			
	and Co	nnuter F	ndineei	rina L)e	epartment
		inputor L	ingineei		spartmont

Test	WER (%)					
Spk	Baseline	Exp. 1	Exp. 2	[22]	[23]	
F04	16.8	16.3	14.5	18.3	13.1	
M03	10.9	12.7	10.7	18.2	17.7	
F03	46.6	39.3	36.8	44.2	39.1	
F01	58.3	52.4	50.4	71.5	39.6	
M01	55.4	51.3	50.3	69.3	62.2	
M02	44	43.1	38.4	70.9	42.9	
M04	65.8	64.2	62	79.9	69.0	
M05	58.2	53.6	49.6	77.2	62.6	
Overall Average		41.6	39.2	56.2	43.3	
	Spk F04 M03 F03 F01 M01 M02 M04	SpkBaselineF0416.8M0310.9F0346.6F0158.3M0155.4M0244M0465.8M0558.2	SpkBaselineExp. 1F0416.816.3M0310.912.7F0346.639.3F0158.352.4M0155.451.3M024443.1M0465.864.2M0558.253.6	SpkBaselineExp. 1Exp. 2F0416.816.314.5M0310.912.710.7F0346.639.336.8F0158.352.450.4M0155.451.350.3M024443.138.4M0465.864.262M0558.253.649.6	SpkBaselineExp. 1Exp. 2[22]F0416.816.314.518.3M0310.912.710.718.2F0346.639.336.844.2F0158.352.450.471.5M0155.451.350.369.3M024443.138.470.9M0465.864.26279.9M0558.253.649.677.2	

RESULTS AND DISCUSSION:

This table shows that augmentation using synthetic speech at three dysarthria levels with pause insertion improved the WER of each severity level on average except for the group with the low severity.

Augmentation using synthetic speech at three severity levels plus pause insertion, further varying energy, pitch, and duration improved WER across all severity levels.

WER of each severity level for the two augmentation experiments.

Severity	, ,,	Б (F A	Improvement		
level	baseline	Exp. 1	Exp. 2	Exp.1	Exp.2	
Very Low	13.8	14.5	12.6	-4.7%	9%	
Low	46.6	39.3	36.8	7.3%	21%	
Moderate	56.3	52.9	50.1	6%	11%	
All	44.5	41.6	39.2	6.5%	12.2%	

CONCLUSION:

Main contribution: Adding a dysarthria severity level coefficient and a pause insertion model to

synthesize dysarthric speech for varying severity levels.

Result: A DNN-HMM ASR model trained on additional synthetic dysarthric speech achieves WER improvement of 12.2% compared to the baseline.

For the future: we intend to combine the all dysarthric dataset to have more data with aligning their severity categories and also try Zero-shot learning to enrich speaker in different severity

groups.

12

THANK YOU FOR YOUR ATTENTION

