

Category-Adaptive Domain Adaptation for Semantic Segmentation

Authors: Zhiming Wang, Yantian Luo, Danlan Huang, Ning Ge, Jianhua Lu

Department of Electronic Engineering, Tsinghua University, Beijing 100084, P.R. China Beijing National Research Center for Information Science and Technology

消華大掌 Tsinghua University

Outline

- Introduction
 - Backgrounds
 - Problem statement
 - Baseline & Proposed method
- Experiments
 - Datasets
 - Training settings & Loss functions
 - Quantitative performance
 - Qualitative performance
 - Ablation Study
- Conclusions
 - Takeaways
 - Future work

Introduction / Backgrounds

Semantic Segmentation

> Applications:

- Auto driving
- Scene understanding
- Medical diagnosis
- Categories
 - Supervised manner

Image

Semantic map

- Advantages: excellent performance and model is easy to train
- Disadvantages:

No annotations Tedious Time consuming

Domain adaptation based semantic segmentations

Domain adaptation based semantic segmentations

Introduction / Problem Statement

> Pipeline of the cross-domain adaptation for semantic segmentation:

Introduction / Proposed Method

 D_c : segmentation discriminator D_f^1 , D_f^2 : style discriminators

Style Gap Bridging Mechanism:

- Previous work: MSE of the channel-wise statistics of extracted features
- > Our work:
 - Feature-level: adversarial training of the channel-wise mean of extracted features
 - Output-level: adversarial training of the output probability maps
- > Motivation:
 - MSE requires the features meet with Gaussian distribution assumption
 - Adversarial training is proved to narrow the distribution distance of data

Introduction / Proposed Method

- Previous pseudo labeling:
 - set a fixed threshold for all categories (like BDL)
 - leverage category-wise ratio priors (like ADVENT, CBST)
- > category-adaptive threshold mechanism for pseudo labeling:
 - Given $P_t \in \mathbb{R}^{H_t \times W_t \times C}$, the category centroid is defined as follows:

$$f^{c} = \frac{1}{|\mathcal{P}^{c}|} \sum_{|\mathcal{X}_{t}|} \sum_{h=1}^{H_{t}} \sum_{w=1}^{W_{t}} \mathbb{1}_{[c=\arg\max_{c'} P_{t}^{hwc'}]} P_{t}^{hw}$$

■ an indicator variable is defined as follows:

$$m_t^{hwc} = \mathbb{1}_{[H(P_t^{hw}) < H(f^c) - \Delta, c = \arg\max_{c'} P_t^{hwc'}]}$$

- $H(\cdot)$ denotes the entropy function
- Δ is a manually fixed hyper-parameter to control the threshold for each category.

Experiments / Loss Functions

Two training phases: Domain adaptation training and SSL

- Domain adaptation training phase
 - Segmentation Loss:

$$\mathcal{L}_{seg} = -\frac{1}{H_s W_s} \sum_{h=1}^{H_s} \sum_{w=1}^{W_s} \sum_{c=1}^{C} y_s^{hwc} \log \hat{y}_s^{hwc}$$

Output-based Domain Adaptation Loss:

$$\mathcal{L}_{adv_seg} = -\min_{E_c, Dec} \max_{D_c} \mathbb{E}_{I_t \sim T} \log \left[D_c \left(\text{Dec} \left(E_c \left(I_t \right) \right) \right) \right] + \mathbb{E}_{I_s \sim S} \log \left[1 - D_c \left(\text{Dec} \left(E_c \left(I_s \right) \right) \right) \right]$$

■ Style Loss:

$$\mathcal{L}_{\text{style}} = -\sum_{m=1}^{M} \min_{\substack{E_{c}^{m} \\ D_{f}^{m}}} \max_{D_{f}^{m}} \left\{ \mathbb{E}_{I_{t} \sim T} \log \left[D_{f}^{m} \left(S_{tm} \right) \right] + \mathbb{E}_{I_{s} \sim S} \sum_{m=1}^{M} \log \left[1 - D_{f}^{m} \left(S_{sm} \right) \right] \right\}$$

> Final loss on the domain adaptation training phase:

$$\mathcal{L} = \lambda_{seg} \mathcal{L}_{seg} + \lambda_{adv_seg} \mathcal{L}_{adv_seg} + \lambda_{style} \mathcal{L}_{style}$$

Experiments / Loss Functions

Two training phases: Domain adaptation training and SSL

- > SSL phase
 - Self-supervised Loss:

$$\mathcal{L}_{ssl} = -\frac{1}{H_t W_t} \sum_{h=1}^{H_t} \sum_{w=1}^{W_t} \sum_{c=1}^{C} m_t^{hwc} \hat{y}_t^{hwc} \log P_t^{hwc}$$

➢ Final Loss during the SSL phase:

$$\mathcal{L} = \lambda_{seg} \mathcal{L}_{seg} + \lambda_{adv_seg} \mathcal{L}_{adv_seg} + \lambda_{style} \mathcal{L}_{style} + \mathcal{L}_{ssl}$$

- Source Domain Dataset: GTA5
 - 24966 synthetic images collected from the game engine
 - 19-category pixel-accurate annotations (compatible with Cityscapes)
- Target Domain Dataset: Cityscapes
 - collected from streetscapes in 50 different Germany cities
 - 2975 training images
 - 500 validation images (as the testing set)
 - 1525 testing images (abandoned for the lack of annotations)

Experiments / Training Settings

Encoder architecture: DeepLab V2

Segmentation and style discriminators' architecture: PatchGAN

≻ Hyper-parameters: $\lambda_{seg} = 1$, $\lambda_{adv_seg} = \lambda_{style} = 1 \times 10^{-3}$

Module	Optimizer	Original learning rate	Leanring rate update		
Encoder		2.5×10^{-4}	poly decay policy:		
Decoder	SGD with momentum=0.9	2.5×10^{-3}	maxstep=250,000 Power=0.9		
Discriminator	Adam with $\beta =$ (0.9,0.99)	1×10^{-4}	exponential decay policy: decay rate:0.1 decay steps: 50,000		

Table 1: Comparison among different methods for "GTA5 to Cityscapes"

$GTA5 \rightarrow Cityscapes$																				
Method	road	sidewalk	building	wall	fence	pole	t-light	t-sign	vegetation	terrain	sky	person	nider	car	truck	bus	train	motorbike	bicycle	mIoU
CBST[4]	89.6	58.9	78.5	33.0	22.3	41.4	48.2	39.2	83.6	24.3	65.4	49.3	20.2	83.3	39.0	48.6	12.5	20.3	35.3	47.0
Cycada [19]	86.7	35.6	80.1	19.8	17.5	38.0	39.9	41.5	82.7	27.9	73.6	64.9	19	65.0	12.0	28.6	4.5	31.1	42.0	42.7
ADVENT [6]	87.6	21.4	82.0	34.8	26.2	28.5	35.6	23.0	84.5	35.1	76.2	58.6	30.7	84.8	34.2	43.4	0.4	28.4	35.2	44.8
DCAN [20]	85.0	30.8	81.3	25.8	21.2	22.2	25.4	26.6	83.4	36.7	76.2	58.9	24.9	80.7	29.5	42.9	2.5	26.9	11.6	41.7
CLAN [21]	87.0	27.1	79.6	27.3	23.3	28.3	35.5	24.2	83.6	27.4	74.2	58.6	28.0	76.2	33.1	36.7	6.7	31.9	31.4	43.2
BDL 5	91.0	44.7	84.2	34.6	27.6	30.2	36.0	36.0	85.0	43.6	83.0	58.6	31.6	83.3	35.3	49.7	3.3	28.8	35.6	48.5
Ours	91.7	51.1	85.0	38.7	26.7	32.1	38.1	34.6	84.3	38.6	84.9	60.7	32.8	85.2	41.9	49.8	2.8	28.5	45.0	50.2

Compared with BDL, our method has a gain of 1.7 on overall mIoU.
Compared with CBST, our model brings +3.2% mIoU improvement.
Compared with ADVENT, our model brings +5.4% mIoU improvement.

Table 2: Ablation study on SSL and style constraints.

$GTA5 \rightarrow Cityscapes$	
model	mIoU
original	44.6
original + adv	45.5
original + adv + SSL once	48.5
original + adv + SSL twice	50.2

Table 3: Comparison on style gap bridging mechanisms

style gap bridging mechanism	style modeling	mIoU
MSE	Gram matrix	44.7
WIGL	mean & std	45.1
adversarial learning	mean (Ours)	45.5

Experiments / Qualitative Performance

Conclusions

➤ Takeaways:

- propose a style gap bridging mechanism based on adversarial learning
- propose a category-adaptive threshold mechanism to choose pseudo labels for SSL

≻Future work:

- an elaborate network architecture is worth exploring
- an efficiency pseudo labeling mechanism is appealing
- the statistic modeling of "style information" needs further research

References

[1] M. D. Zeiler, G. W. Taylor, and R. Fergus, "Adaptive deconvolutional networks for mid and high level feature learning," in Proc. ICCV, 2011, pp. 2018-2025.

[2] L. A. Gatys, A. S. Ecker, and M. Bethge, "Aneural algorithm of artistic style," arXiv preprintarXiv:1508.06576, 2015.

[3] X. Huang and S. Belongie, "Arbitrary style transfer in real-time with adaptive instance normalization," in Proc. ICCV, 2017, pp. 1501–1510.

[4] Y. Zou, Z. Yu, B. Vijaya Kumar, and J. Wang, "Unsupervised domain adaptation for semantic segmentation via class-balanced self-training," in Proc. ECCV, 2018, pp. 289–305

[5] Y. Li, L. Yuan, and N. Vasconcelos, "Bidirectional learning for domain adaptation of semantic segmentation," in Proc. CVPR, 2019, pp. 6936–6945.
[6] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. P´erez, "Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation," in Proc. CVPR, 2019, pp. 2517–2526.

[7] Hou and L. Zheng, "Source free domain adaptation with image translation,"arXiv preprintarXiv:2008.07514, 2020.

[8] C. Lu, J. Tang, M. Lin, L. Lin, S. Yan, and Z. Lin, "Correntropy induced l2 graph for robust subspace clustering," in Proc. ICCV, 2013, pp. 1801–1808.
[9] Q. Zhang, J. Zhang, W. Liu, and D. Tao, "Category anchor-guided unsupervised domain adaptation for se-mantic segmentation," in Proc. NIPS, 2019, pp. 435–445.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets," in Proc. NIPS 2014, pp.2672–2680.

[11] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, "Playing for data: Ground truth from computer games," in Proc. ECCV, 2016, pp. 102–118.
[12] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-zweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urban scene understanding," in Proc. CVPR, 2016, pp. 3213–3223.

[13] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, "IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp.834–848, 2017

[14] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," inProc. CVPR, 2016, pp. 770–778.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Ima-genet classification with deep convolutional neural networks," Communications of the ACM, vol. 60, no. 6, pp.84–90, 2017.

[16] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional adversarial net-works," in Proc. VPR, 2017, pp. 1125–1134.

Thank you!

wang-zm18@mails.tsinghua.edu.cn