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Introduction / Backgrounds

Semantic Segmentation

Applications:

 Auto driving

 Scene understanding

 Medical diagnosis

 Categories

 Supervised manner

• Advantages:  excellent performance and model is easy to train 

• Disadvantages:

 Domain adaptation based semantic segmentations

Semantic mapImage

Time consumingTediousNo annotations



Introduction / Problem Statement

 Domain adaptation based semantic segmentations

Source Domain

Target Domain



Introduction / Problem Statement
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 Pipeline of the cross-domain adaptation for  semantic segmentation: 



Introduction / Proposed Method

𝐷𝑐: segmentation discriminator     𝐷𝑓
1, 𝐷𝑓

2: style discriminators



Introduction / Proposed Method

Style Gap Bridging Mechanism:

 Previous work: MSE of the channel-wise statistics of extracted features

 Our work:

 Feature-level:  adversarial training of the channel-wise mean of extracted features

 Output-level: adversarial training of the output probability maps

 Motivation:

 MSE requires the features meet with Gaussian distribution assumption

 Adversarial training is proved to narrow the distribution distance of data



Introduction / Proposed Method

Given 𝑃𝑡 ∈ ℝ𝐻𝑡×𝑊𝑡×𝐶, the category centroid is defined as follows:

 Previous pseudo labeling: 

 set a fixed threshold for all categories  (like BDL)

 leverage category-wise ratio priors (like ADVENT, CBST)

 an indicator variable is defined as follows: 

 H(·) denotes the entropy function

 ∆ is a manually fixed hyper-parameter to control the threshold for each category. 

 category-adaptive threshold mechanism for pseudo labeling:



Experiments / Loss Functions

Two training phases: Domain adaptation training and SSL

 Domain adaptation training phase

 Segmentation Loss:

 Output-based Domain Adaptation Loss:

 Style Loss:

 Final loss on the domain adaptation training phase:



Experiments / Loss Functions

Two training phases: Domain adaptation training and SSL

 SSL phase

 Self-supervised Loss:

 Final Loss during the SSL phase:



Experiments / Datasets

Source Domain Dataset: GTA5

 24966 synthetic images collected from the game engine

 19-category pixel-accurate annotations（compatible with Cityscapes）

Target Domain Dataset: Cityscapes 

 collected from streetscapes in 50 different Germany cities

 2975 training images 

 500 validation images (as the testing set) 

 1525 testing images (abandoned for the lack of annotations)



Experiments / Training Settings

Encoder architecture:  DeepLab V2

Segmentation and style discriminators’ architecture: PatchGAN

Hyper-parameters: 𝜆𝑠𝑒𝑔 = 1, 𝜆𝑎𝑑𝑣_𝑠𝑒𝑔 = 𝜆𝑠𝑡𝑦𝑙𝑒 = 1 × 10−3

Module Optimizer Original learning rate Leanring rate update

Encoder

SGD with 

momentum=0.9

2.5 × 10−4 poly decay policy: 

maxstep=250,000

Power=0.9Decoder 2.5 × 10−3

Discriminator
Adam with 𝛽 =
(0.9,0.99)

1 × 10−4
exponential decay policy:

decay rate:0.1

decay steps: 50,000



Experiments / Quantitative Performance

Compared with BDL,  our method has a gain of 1.7 on overall mIoU. 

Compared with CBST, our model brings +3.2% mIoU improvement.

Compared with ADVENT, our model brings +5.4% mIoU improvement.



Experiments / Ablation Study



Experiments / Ablation Study



Experiments / Qualitative Performance



 Takeaways:

 propose a style gap bridging mechanism based on adversarial learning

 propose a category-adaptive threshold mechanism to choose pseudo labels for SSL

Future work:

 an elaborate network architecture is worth exploring

 an efficiency pseudo labeling mechanism is appealing

 the statistic modeling of “style information” needs further research

Conclusions
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