# GRAPH ATTENTIVE FEATURE AGGREGATION FOR TEXT-INDEPENDENT SPEAKER VERIFICATION

Hye-jin Shim<sup>1†</sup>, Jungwoo Heo<sup>1†</sup>, Jae-han Park<sup>2</sup>, Ga-hui Lee<sup>2</sup>, and Ha-Jin Yu<sup>1\*</sup> <sup>1</sup>School of Computer Science, University of Seoul, <sup>2</sup>KT Corporation

| Speaker Verification (SV)                                                                                           |
|---------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Process of verifying a person's claimed identity using their<br/>enrollment and test utterances</li> </ul> |
| <ul> <li>2 Steps: frame-level feature extraction, utterance-level feature aggregation</li> </ul>                    |
| Utterance-level feature aggregation                                                                                 |
| <ul> <li>Aggregate frame-level features into a single utterance-leve</li> </ul>                                     |
| <ul> <li>Gated Recurrent Units, Learnable Dictionary Encoding, atte</li> </ul>                                      |
| Research background                                                                                                 |
| <ul> <li>Sequential information may not be the key in</li> </ul>                                                    |
| text-independent SV <sup>1, 2)</sup>                                                                                |

Attention cannot model each frame pair's intra relationships



- calculated
- 1) K. Okabe, T. Koshinaka and K. Shinoda, "Attentive statistics pooling for deep speaker embedding," in Proc. Interspeech, 2018. 2) B. Desplanques, J. Thienpondt and K. Demuynck, "Ecapa-tdnn: Emphasized channel attention, propagation and aggrega-tion in tdnn based speaker verification," in Proc. Interspeech, 2020

### Overview

- ture
- ention
- Proposed Method •
  - **Graph attentive feature aggregation**
  - Improved feature aggregation method Utilizing graph attention networks<sup>3)</sup>
  - Entire frame-level features are aggregated
  - considering their inter-relationships
- I feature V 🍄 Our Contributions
  - Proposed graph attentive feature aggregation First approach using GNN for feature aggregation in SV research
  - Explored various readout and structure Validated the effectiveness of the proposed method using both spectrogram and raw wave
  - form baselines



<sup>†</sup>Equally contributed, <sup>\*</sup>Corresponding author



### Dataset Train: VoxCeleb2<sup>5</sup> developement set Test: VoxCeleb1<sup>4</sup> test set Baseline domain SE-ResNet: Modified Clova system - RawNet2: Input: raw waveform Modified original RawNet2 Results Table 1 than baselines Table 2 (Check out our paper for more results) Feature extractor Ag SE-ResNet SE-ResNet

RawNet2 RawNet2

|                     | Input Feature | Front-end      | Aggregation | EER (%) |
|---------------------|---------------|----------------|-------------|---------|
| Chung et al.        | Spec-257      | Thin ResNet-34 | SAP         | 2.21    |
| Yu et al.           | Spec-512      | ResNet-50      | TAP         | 2.94    |
| Liu et al.          | MFB-40        | Dense-Residual | ABP         | 2.54    |
| Jung <i>et al</i> . | MFB-40        | Fast ResNet-34 | LDE         | 1.98    |
| Kye et al.          | MFB-40        | Fast ResNet-34 | CAP         | 1.88    |
| Ours                | MFB-40        | SE-ResNet      | SAP         | 1.98    |
| Ours(Proposed)      | MFB-40        | SE-ResNet      | GAT         | 1.75    |
| Lin et al.          |               | wav2spk        | Gating + SP | 3.00    |
| Zhu et al.          | Raw waveform  | Y-vector       | SP          | 2.60    |
| Jung et al.         |               | RawNet2        | GRU         | 2.48    |
| Ours(Proposed)      |               | RawNet2        | GAT         | 2.15    |

3) P.Velic ković, G.Cucurull, A.Casanovaetal., "Graph attention networks," arXiv preprint arXiv:1710.10903, 2017. 4) A.Nagrani, J.S.Chungand A.Zisserman, "Voxceleb:a large- scale speaker identification dataset," in Proc. Interspeech, 2017. 5) J. S. Chung, A. Nagrani and A. Zisserman, "Voxceleb2: Deep speaker recognition," in Proc. Interspeech, 2018.





## Experiments & Results

Used two baseline to check the effect according to the input

• Input: 40-dimensional mel-filterbank features

Both systems improved performance with fewer parameters

Proposed graph attentive feature aggregation was effective

The proposed system showed superior performance in both spectrogram and raw waveform domain Our system achieved state-of-the-art performance

Table1: application of GAT

| gregation | # Params | EER (%) |
|-----------|----------|---------|
| SAP       | 6.0M     | 1.98    |
| GAT       | 5.4M     | 1.86    |
| GRU       | 13.2M    | 2.48    |
| GAT       | 9.9M     | 2.23    |

Table2: performance comparison with state-of-the-art systems