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SCAN ME!

Experiments & ResultsOverview
❖ Speaker Verification (SV)
▪ Process of verifying a person’s claimed identity using their 

enrollment and test utterances
▪ 2 Steps: frame-level feature extraction, utterance-level feature 

aggregation

❖ Utterance-level feature aggregation
▪ Aggregate frame-level features into a single utterance-level feature
▪ Gated Recurrent Units, Learnable Dictionary Encoding, attention

❖ Research background
▪ Sequential information may not be the key in 

text-independent SV 1, 2)

▪ Attention cannot model each frame pair’s intra relationships

❖ Proposed Method
▪ Graph attentive feature aggregation

- Improved feature aggregation method
- Utilizing graph attention networks3)

- Entire frame-level features are aggregated 
considering their inter-relationships

❖ Our Contributions
▪ Proposed graph attentive feature aggregation

- First approach using GNN for feature 
aggregation in SV research

▪ Explored various readout and structure
▪ Validated the effectiveness of the proposed 

method using both spectrogram and raw wave 
form baselines

Graph poolingNode projection & Edge score calculation

Graph formulation Self attention

Proposed method

▪ Graph formulation - formulate a graph from a feature map
▪ Node projection - Project 𝒙 into 𝐹′ dimensional space by 

matrix multiplication with learnable parameter 𝑾 ∈ 𝑹𝐹×𝐹′

▪ Edge score calculation – calculate edge scores (𝛾 ∈ 𝑹2𝐹′×1)
Since the total number of nodes is 𝑁, 𝑁 × 𝑁 scores are 
calculated

▪ Self attention - performs self-attention on every nodes
▪ Graph pooling - reduce the original graph into a sub-

graph by removing less informative nodes
▪ Readout - Combines the processed nodes into a single 

node 

𝒆𝒊𝒋 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝛾 ∙ 𝑐𝑜𝑛𝑐𝑎𝑡(𝒏𝒊
′, 𝒏𝒋

′))

𝒂𝒊𝒋 =
exp(𝒆𝒊𝒋)

σ𝑡=1
𝑁 exp(𝒆𝒊𝒕)

❖ Dataset
▪ Train: VoxCeleb25) developement set
▪ Test: VoxCeleb14) test set

❖ Baseline
▪ Used two baseline to check the effect according to the input 

domain
- SE-ResNet: 
• Input: 40-dimensional mel-filterbank features
• Modified Clova system

- RawNet2: 
• Input: raw waveform
• Modified original RawNet2

❖ Results
▪ Table 1

- Both systems improved performance with fewer parameters 
than baselines

- Proposed graph attentive feature aggregation was effective

▪ Table 2
- The proposed system showed superior performance in 

both spectrogram and raw waveform domain
- Our system achieved state-of-the-art performance

(Check out our paper for more results)

Table2: performance comparison with state-of-the-art systems

Table1: application of GAT
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