RawNeXt: Speaker verification system for variable-duration utterances with deep layer aggregation and extended dynamic scaling policies

\frown	
Over	

- Speaker verification (SV): The task of determining whether the identity of an anonymous voice matches the target speaker
- Problems: Variable-duration input utterance degrades the reliability of SV system
- Insufficient speaker-specific information of short utterance
- SV systems operating in a fixed way with manually designed layers Proposed model: RawNeXt
- Apply deep layer aggregation: Enhance speaker information by iteratively and hierarchically aggregating features
- Propose extended dynamic scaling policy: Process features according to the length of the utterance
- 28.7% and 28.4% relative improvement compared to baseline for full-length result and mean result of 1,2, and 5s lengths for the VoxCeleb1 evaluation set

Baseline architecture with raw waveform Input feature of models: Raw waveform ✤Detailed Level 1.Data-driven manner on less-processed data can extract discriminative representations Convs suitable for SV tasks 2. Minimal hyper-parameter search of acoustic Stage 0 feature pre-processing Stage 1 DNN architecture: A variant of ResNeXt¹ Contain the grouped convolutional layers Stage 2 (Number of group: 32) Stage 3 Input: Raw waveform (59,049 sample) Pooling • Output: Speaker embedding (512 dim) Embedding

Experiments & Results

Experiment configurations

- Training dataset: VoxCeleb2 6,112 speakers
- Evaluation dataset: VoxCeleb1 40 speakers
- Batch size: 320
- Training epoch: 80 Test utterance duration : 1s, 2s, 5s and full length • Weight decay: 10^{-4}
- Performance comparison Learning rate (LR): $10^{-3} \to 10^{-7}$: Equal error rate (EER)
- Exp1: Comparison with recently proposed SV system for variable-duration utterances
 - Proposed RawNeXt outperforms other models for all test conditions
 - Compared to baseline, 28.7% improvement for full-length test / 28.4% improvement for mean result of 1,2, and 5-sec lengths
 - RawNeXt demonstrates superior generalization and robustness to variable-length utterances

Model	Input	Loss	Test utterance length (EER, %)				
INICUEI	Feature	Function	1 s	2s	5 s	full	
MESA+FPM ⁴	MFB-64	A-Softmax	5.92	3.38	2.17	1.98	
ResNet34 ⁵	MFB-40	Softmax+PN	4.49	2.88	2.04	1.91	
ResNeXt	Waveform	Softmax	6.12	3.68	2.45	2.16	
RawNeXt	Waveform	Softmax	4.47	2.58	1.72	1.54	

S. Xie et. al., Aggregated residual transformations for deep neural networks, CVPR 2017. 2. F. Yu et. al., Deep layer aggregation, CVPR 2018.

Ju-ho Kim, Hye-jin Shim, Jungwoo Heo, and Ha-Jin Yu School of Computer Science, University of Seoul, South Korea

1	architecture	
J	architecture	

Block structure	# Blocks	Output		
Conv(3, 3, 128)	1			
Conv(3, 1, 128) Maxpool(3)	2	2,187×128		
Conv(1,1,256) Conv(3,1,256), <i>C</i> =32	2	729×256		
$\frac{\text{Conv}(1,1,256)}{\text{Maxpool}(\overline{3})} = -$	4	243×256		
Conv(1,1,512) Conv(3,1,512), <i>C</i> =32	4	81×512		
$\frac{\text{Conv}(1,1,512)}{\text{Maxpool}(\overline{3})} = -$	2	27×512		
ASP	1	1,024		
FC(512)	1	512		

• Optimizer: AMSGrad

RawNeXt with Deep Layer Aggregation & Extended Dynamic Scaling Policy

Combining features of multiple layers for variable-duration SV • Yield context-rich representations by merging intermediate features of various time scales

1.Deep layer aggregation (DLA)²

- lengths

- multiple inputs and project it into a single output

RawNeXt structure

	ASP & FC	_ F	lierarchio	cal deep ag	greg	atio
	Aggregation block	►	terative c	deep aggre	gatio	า
	Aggregation block w	ith N	1P			
	RawNeXt block			$\frac{T}{3^5}$, 256		
	Conv blocks $\frac{T}{3^4}$, 2	56				
	$T, 1$ $\frac{T}{3^3}, 128$					
						→
	Utterances Stage ()	Sta	ge 1		S
	 <i>f</i>_i^r:1d convolutional layer of the <i>i</i>-th path i the <i>r</i> resolution brance 	n	functio	vnsampling on(average g layer)		U ^r fun cor
***	Exp2: Ablation experim				•	
	 #1: ResNext (Baseli Performance improv 			Υ.	•	,
					appi	UU

The motivations of each method are well aligned with the goal of variable-duration utterance SV

Model	D	Е	G	U	Test ut	te
Model			G	U	1 s	
#1	Х	Х	Х	Х	6.12	
#2	0	Х	Х	Х	4.82	
#3	Х	0	Х	Х	5.39	
#4	0	0	Х	Х	4.66	
#5	0	0	0	Х	4.67	
#6	0	0	Х	0	4.65	
#7	0	0	0	0	4.47	

3. H. Wang et.al., Elastic: Improving cnns with dynamic scaling policies, CVPR 2019. 5. S. Kye et. al., Supervised attention for speaker recognition, SLT 2021. 4. Y. Jung et. al., Improving multi-scale aggregation using feature pyramid module for robust speaker verification of variable-duration utterances, Interspeech 2020.

• Apply to derive speaker embeddings by fusing features in a more iterative and hierarchical manner for utterances of various

• Iterative deep aggregation module: Enrich temporal context information by merging the different time resolution of features • Hierarchical deep aggregation module: Enhance spectral context information by combining the feature channels of different levels Aggregation block: Learn to select important information from the

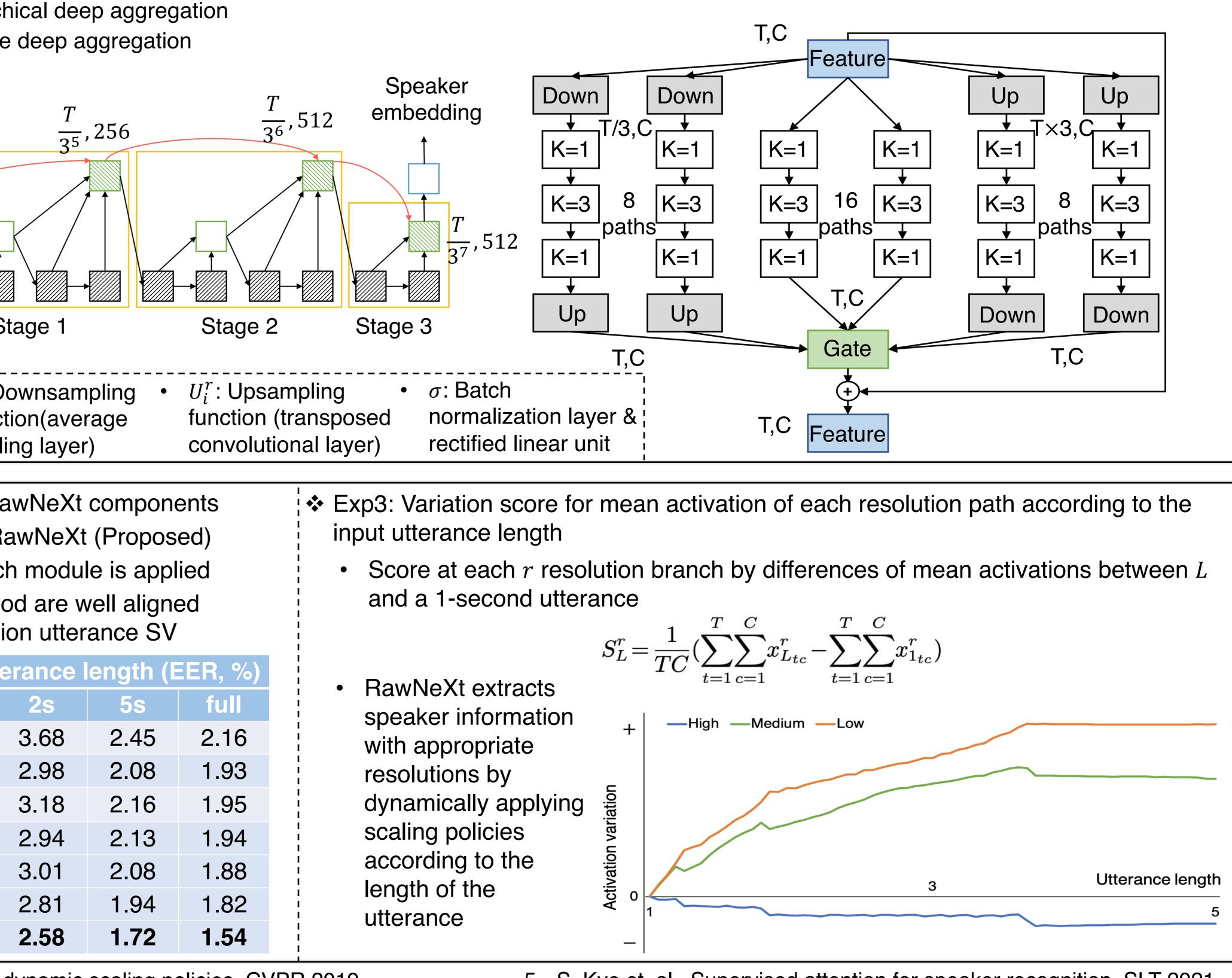
Elastic³: Processing images with various scales in vision tasks • Learn a scaling policy from data by combining the features output by the original path and downsampling path of each block 2.Extend dynamic scaling policy (EDSP)

- with receptive fields of different sizes

$$F^{l}(x) = \sum_{i=1}^{8} U^{l}_{i}(f^{l}_{i}(D(x))), \ F^{o}(x) = \sum_{i=1}^{16} f^{o}_{i}(x), \ F^{h}(x) = \sum_{i=1}^{8} D(f^{h}_{i}(U^{h}_{i}(x)))$$

- mechanism

RawNeXt block architecture



Paper #3386

서울시립대학교 UNIVERSITY OF SEOUL

 Propose for utterance of arbitrary lengths based on Elastic • Utilize three resolution branches and a gate module

• Low, original, and high resolution branches: Feature extraction

• Gate module: Selectively merge the activation of each branch according to the length of input utterance by using self-attention

• RawNeXt block with skip-path: $B(x) = \sigma(Gate(F^{l}(x), F^{o}(x), F^{h}(x)) + x)$