A Variational Bayesian Approach to Learning Latent Variables for Acoustic Knowledge Transfer

Hu Hu¹, Sabato Marco Siniscalchi^{1,2}, Chao-Han Huck Yang¹, Chin-Hui Lee¹

¹School of Electrical and Computer Engineering , Georgia Institute of Technology ²Computer Engineering School, University of Enna Kore

IEEE ICASSP 2022 Paper 2182

- Introduction
 - Acoustic mismatches and knowledge transfer
- Bayesian Adaptive Learning
 - Bayesian adaptive learning framework
 - Bayesian adaptation for speech processing systems
 - Challenges of Bayesian Adaptation for Deep Models
- Variational Bayesian Knowledge Transfer
 - > Bayesian inference of deep latent variables
 - Variational Bayes based adaptive learning
 - Experimental evaluation

Acoustic Variabilities and Mismatches

- In production, acoustic models need to deal with different application scenarios.
- Acoustic variabilities:
 - Speakers: genders, accents, ...
 - Recording devices: handsets, channels, ...
 - Recording environments: scenes, noise types, reverberations, ...

▶

- Acoustic mismatches usually cause severe degradation in diverse testing conditions.
- Effective adaptation algorithms are required.

Acoustic Knowledge Transfer

- Acoustic knowledge transfer:
 - Transfer knowledge from the source acoustic domain to the target ones related to testing conditions.
 - It is also referred to as the supervised domain adaptation.

- An example of device adaptation
 - > Trained by data from iPhone (Source domain).
 - Adapted to iPad and HomePod (Target domains).

Introduction

Acoustic mismatches and knowledge transfer

• Bayesian Adaptive Learning

- Bayesian adaptive learning framework
- > Bayesian adaptation for speech processing systems
- Challenges of Bayesian Adaptation for Deep Models
- Variational Bayesian Knowledge Transfer
 - > Bayesian inference of deep latent variables
 - Variational Bayes based adaptive learning
 - Experimental evaluation

Bayesian Adaptive Learning Framework

• Bayes' theory:

 $p(\lambda|\mathcal{D}) = \frac{p(\mathcal{D}|\lambda)p(\lambda)}{p(\mathcal{D})}$

- \succ λ : model parameters; *D*: data; *S*: source domain; *T*: target domain.
- For adaptation setups:
 - ➢ Prior knowledge learnt from the source domain is encoded in prior distribution: $p(\lambda_T) = p(\lambda_S | \mathcal{D}_S)$
 - > The target domain posterior distribution:

$$p(\lambda_T | \mathcal{D}_T) = \frac{p(\mathcal{D}_T | \lambda_T) p(\lambda_S | \mathcal{D}_S)}{p(\mathcal{D}_T)}$$

- The posterior is usually intractable and difficult to get.
 - > An approximation is required: Maximum a posteriori (MAP), Variational Bayes (VB), ...

 MAP shows good performance for GMM-HMM based ASR system to handle acoustic mismatches [Gauvian, 1994; Lee, 2000].

$$\lambda_T^* = \underset{\lambda_T}{\operatorname{argmax}} p(\lambda_T | \mathcal{D}_T) = \underset{\lambda_T}{\operatorname{argmax}} p(\mathcal{D}_T | \lambda_T) p(\lambda_T)$$

- Example: GMM and HMM parameters with conjugated prior distributions:
 - > HMM parameters: Dirichlet distribution.
 - ➢ GMM parameters: Normal-Wishart distribution.

The GMM-HMM system.

 MAP also shows good performance for DNN-HMM based ASR system for speaker adaptation [Huang, 2015; Huang 2017].

• Linear hidden network (LHN) is used to cast Bayesian assumption.

 $Loss_{MAP} = -\log p(\mathcal{D}_T|W) - \alpha \log p(W_{lhn})$

DNN with linear hidden layer.

Challenges of Bayesian Adaptation for Deep Models

- Traditional Bayesian approaches usually focus on model parameters.
 - > It works well for traditional statistic models like HMM, GMM, SVM, ...

- For DNN, we have much more parameters than training samples.
 - ➤ # of para. >> # of data dimension * # of data [Sebastien, 2021].
 - Especially for the adaptation scenarios.

- Challenges and problems:
 - > Difficult to get accurate estimations of model parameters by Bayesian approaches.
 - Curse of dimensionality.

- Introduction
 - Acoustic mismatches and knowledge transfer
- Bayesian Adaptive Learning
 - > Bayesian adaptive learning framework
 - Bayesian adaptation for speech processing systems
 - > Challenges of Bayesian Adaptation for Deep Models
- Variational Bayesian Knowledge Transfer
 - > Bayesian inference of deep latent variables
 - Variational Bayes based adaptive learning
 - Experimental evaluation

Deep Latent Variables

- We propose to perform Bayesian adaptive learning on **deep latent variables** rather than on DNN weights.
 - An unobservable representation of data, corresponding to intermediate hidden embedding from a specific layer of DNN.
- An example of deep latent variables.
 - Z indicates the deep latent variables.
 - Prior: p(Z); Posterior: p(Z|X).
 - \succ We decouple DNN weights to θ and ω .

Deep Latent Variables (Cont'd)

- Acoustic scene model embedding.
 - > 10 different scene classes:
 - Airport, metro, ...
 - ➢ 3 general classes C1-C3:
 - \circ $\,$ Indoor, outdoor, transportation.
 - Hidden embedding is generated by a DNN model and reduced to 2 dimensions.
- Deep latent variable has its own distribution form.
- Deep latent variable encodes structural relationships.

A visualization of deep latent variables [Hu, 2020].

Bayesian Inference of Deep Latent Variables

• Latent variables are introduced in addition to DNN weights.

 $p(\lambda) = p(Z, \theta, \omega) = p(Z|\theta)p(\theta)p(\omega)$

Bayesian Inference of Deep Latent Variables (Cont'd)

• Prior knowledge for target model is learnt from the source domain

 $p(Z_T|\theta_T) = p(Z_S|\theta_S, \mathcal{D}_S)$

• Posterior with latent variables:

$$p(\lambda_T | \mathcal{D}_T) = \frac{p(\mathcal{D}_T | \lambda_T) p(\theta_T) p(\omega_T) p(Z_S | \theta_S, \mathcal{D}_S)}{p(\mathcal{D}_T)}$$

- Variational Bayes (VB) based estimation way
 - > Perform a distribution estimation to obtain the full posterior.

Variational Bayes based Adaptive Learning

- Set a variational distribution to approximate the real distribution.
- Minimize the KLD between them, by

$$q^*(\lambda_T | \mathcal{D}_T) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \operatorname{KL}(q(\lambda_T | \mathcal{D}_T) \parallel p(\lambda_T | \mathcal{D}_T))$$

- Get a full VB expression with Z, θ and ω .
 - \blacktriangleright By taking a *non-informative prior* over θ and ω , we can arrive at the variational lower bound:

$$\mathcal{L}(\lambda_T; \mathcal{D}_T) = \mathbb{E}_{Z_T \sim q(Z_T \mid \theta_T, \mathcal{D}_T)} \log p(\mathcal{D}_T \mid Z_T, \theta_T, \omega_T) - \mathsf{KL}(q(Z_T \mid \theta_T, \mathcal{D}_T) \parallel p(Z_T \mid \theta_T))$$

Variational Bayes based Adaptive Learning (Cont'd)

- Gaussian mean-field variational inference (GMFVI) estimation is used:
 - > Each hidden embedding is assumed to be sampled from individual Gaussians:

$$q(Z|\theta, \mathcal{D}) = \prod_{i}^{N_T} \mathcal{N}(Z^{(i)}; \mu^{(i)}, (\sigma^{(i)})^2 \mathcal{I})$$

> Final learning objective:

$$\mathcal{L}(\lambda_T; \mathcal{D}_T) = \sum_{i}^{N_T} \mathbb{E}_{z_T^{(i)} \sim \mathcal{N}(\mu_T^{(i)}, \sigma^2)} \log p(y_T^{(i)} | x_T^{(i)}, z_T^{(i)}, \theta_T, \omega_T) - \frac{1}{2\sigma^2} \sum_{i}^{N_T} \|\mu_T^{(i)} - \mu_S^{(i)}\|_2^2$$

Experimental Setup of Acoustic Scene Classification

- Data set: DCASE 2020 ASC data set.
 - Code available: https://github.com/MihawkHu/ASC_Knowledge_Transfer
- Source domain data:
 - Recorded by a Zoom F8 audio recorder.
 - ➤ ~10K training audio clips.
- Target domain data:
 - Recorded by 8 different devices:
 - o iPhone SE, Samsung Galaxy S7, ...
 - Each has 750 training audio clips.
- Two state-of-the-art models [Hu, 2020] are used: RESNET and FCNN.

Teacher-Student Learning Family

- Teacher-student learning (TSL) is used as a comparison.
 - Transfers knowledge from the teacher network to the student network.
 - The basic approach is to minimize the KLD between outputs of teacher model and student model.

• Point estimation vs. distribution estimation.

Student Network

Teacher-Student Learning Family (Cont'd)

- 13 recent cut-edging knowledge transfer methods compared in our experiments:
 - > TSL: Teacher-student learning [Li, 2014; Hinton, 2015].
 - ➢ NLE: Neural label embedding [Meng, 2020].
 - Fitnets: Hints for thin nets [Romero, 2014].
 - AT: Attention transfer [Zagoruyko, 2016].
 - ➤ AB: Activation boundaries [Heo, 2019].
 - > VID: Variational information distillation [Ahn, 2019].
 - > FSP: Flow of solution procedure [Yim, 2017].
 - > COFD: Comprehensive overhaul feature distillation [Heo, 2019].
 - SP: Similarity preserving [Tung, 2019].
 - > CCKD: Correlation congruence knowledge distillation [Peng, 2019].
 - > PKT: Probabilistic knowledge transfer [Passalis, 2018].
 - > NST: Neuron selectivity transfer [Huang, 2017].
 - ➢ RKD: Relational knowledge transfer [Park, 2019].
- All above are implemented and compared. Some are presented in the next few slides.

Method	$\begin{array}{c c} \text{RESNET} \\ \text{avg}\% \pm \text{std} \end{array}$	$\begin{vmatrix} FCNN \\ avg\% \pm std \end{vmatrix}$
Source. No transfer One-hot	$\begin{array}{c c} 37.70 \\ 54.29 \pm 0.76 \\ 63.76 \pm 0.59 \end{array}$	$\begin{vmatrix} 37.13 \\ 49.97 \pm 2.70 \\ 64.45 \pm 0.51 \end{vmatrix}$
TSL NLE AT SP RKD	$\begin{array}{c} 68.04 \pm 0.34 \\ 65.64 \pm 0.53 \\ 63.73 \pm 0.81 \\ 64.57 \pm 0.76 \\ 65.28 \pm 0.81 \end{array}$	$ \begin{vmatrix} 66.27 \pm 0.46 \\ 64.47 \pm 0.59 \\ 64.16 \pm 0.49 \\ 65.74 \pm 0.37 \\ 65.63 \pm 0.22 \end{vmatrix} $
VBKT-GMFVI	$\mid 69.58 \pm 0.49$	$\begin{array}{ }\hline \textbf{69.96} \pm \textbf{0.13}\end{array}$

- Accuracies on source device data:
 - ➢ RESNET: 79.09 %, FCNN: 79.70 %.

Method	RESNET	FCNN
	avg% ± std	$avg\% \pm std$
Source.	37.70	37.13
No transfer	54.29 ± 0.76	49.97 ± 2.70
One-hot	63.76 ± 0.59	64.45 ± 0.51
TSL	68.04 ± 0.34	66.27 ± 0.46
NLE	65.64 ± 0.53	64.47 ± 0.59
AT	63.73 ± 0.81	64.16 ± 0.49
SP	64.57 ± 0.76	65.74 ± 0.37
RKD	65.28 ± 0.81	65.63 ± 0.22
VBKT-GMFVI	$ig \ 69.58 \pm 0.49$	\mid 69.96 \pm 0.13

- Accuracies on source device data:
 - ▶ RESNET: 79.09 %, FCNN: 79.70 %.
- Device mismatches causes huge degradations when directly applying the source model.

Method	$\begin{vmatrix} \text{RESNET} \\ \text{avg}\% \pm \text{std} \end{vmatrix}$	$\begin{vmatrix} FCNN \\ avg\% \pm std \end{vmatrix}$
Source.	37.70	37.13
No transfer One-hot	$54.29 \pm 0.76 \\ 63.76 \pm 0.59$	$\begin{array}{c} 49.97 \pm 2.70 \\ 64.45 \pm 0.51 \end{array}$
TSL NLE AT SP RKD		$ \begin{array}{c} 66.27 \pm 0.46 \\ 64.47 \pm 0.59 \\ 64.16 \pm 0.49 \\ 65.74 \pm 0.37 \\ 65.63 \pm 0.22 \end{array} $
VBKT-GMFVI	$\big \hspace{0.1cm} \textbf{69.58} \pm \textbf{0.49} \hspace{0.1cm} \big $	$\mid 69.96 \pm 0.13$

- Accuracies on source device data:
 - ➢ RESNET: 79.09 %, FCNN: 79.70 %.
- Device mismatches causes huge degradation when directly applying the source model.
- Fine-tuning with target data can help ease the mismatch issue.

Method	$\begin{array}{c} \text{RESNET} \\ \text{avg}\% \pm \text{std} \end{array}$	$\begin{array}{c} \text{FCNN} \\ \text{avg}\% \pm \text{std} \end{array}$
Source. No transfer One-hot	$\begin{array}{r} 37.70 \\ 54.29 \pm 0.76 \\ 63.76 \pm 0.59 \end{array}$	$\begin{array}{c} 37.13 \\ 49.97 \pm 2.70 \\ 64.45 \pm 0.51 \end{array}$
TSL NLE AT SP RKD	$\begin{array}{c} 68.04 \pm 0.34 \\ 65.64 \pm 0.53 \\ 63.73 \pm 0.81 \\ 64.57 \pm 0.76 \\ 65.28 \pm 0.81 \end{array}$	$\begin{array}{c} 66.27 \pm 0.46 \\ 64.47 \pm 0.59 \\ 64.16 \pm 0.49 \\ 65.74 \pm 0.37 \\ 65.63 \pm 0.22 \end{array}$
VBKT-GMFVI	$\boxed{69.58\pm0.49}$	$\textbf{69.96} \pm \textbf{0.13}$

- Accuracies on source device data:
 - ➢ RESNET: 79.09 %, FCNN: 79.70 %.
- Device mismatches causes huge degradation when directly applying the source model.
- Fine-tuning with target data can help ease the mismatch issue.
- Knowledge transfer algorithms show advantages over simply fine-tuning.

Method	$\begin{vmatrix} \text{RESNET} \\ \text{avg}\% \pm \text{std} \end{vmatrix}$	$\begin{array}{c c} FCNN \\ avg\% \pm std \end{array}$
Source. No transfer One-hot	$\begin{vmatrix} 37.70 \\ 54.29 \pm 0.76 \\ 63.76 \pm 0.59 \end{vmatrix}$	$\begin{array}{c c} 37.13 \\ 49.97 \pm 2.70 \\ 64.45 \pm 0.51 \end{array}$
TSL NLE AT SP RKD		$\begin{array}{c} 66.27 \pm 0.46 \\ 64.47 \pm 0.59 \\ 64.16 \pm 0.49 \\ 65.74 \pm 0.37 \\ 65.63 \pm 0.22 \end{array}$
VBKT-GMFVI	\mid 69.58 \pm 0.49	$\mid 69.96 \pm 0.13$

- Accuracies on source device data:
 - ➢ RESNET: 79.09 %, FCNN: 79.70 %.
- Device mismatches causes huge degradation when directly applying the source model.
- Fine-tuning with target data can help ease the mismatch issue.
- Knowledge transfer algorithms show advantages over simply fine-tuning.
- Our proposed VBKT method improves performance on target devices and outperforms all others.

- Effects of Hidden Embedding Depth
 - Methods use only one hidden layer are compared.
- Last layer (Conv8) shows best results than others.
- Layers closer to output show better results.
 - Better transferable properties.
- The proposed method consistently outperforms all others.

Appendix: More Results and Analysis

- Visualization of intra-class discrepancy
 - 30 samples from the same class are randomly selected.
 - L2 distance between model outputs are computed and visualized.
 - Darker color means bigger intra-class discrepancy.
- The proposed method has consistent smaller intra-class discrepancy than others.
 - It has more discriminative information and better cohesion of instances.

Thank you~

IEEE ICASSP 2022 Paper 2182