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Acoustic Variabilities and Mismatches

* |n production, acoustic models need to deal
with different application scenarios.
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* Acoustic variabilities: b N Acoustic |
> Speakers: genders, accents, ... En IN Models
» Recording devices: handsets, channels, ... -
» Recording environments: scenes, noise types,
reverberations, ... l
> ...
e Acoustic mismatches usually cause severe 2

degradation in diverse testing conditions.
e Effective adaptation algorithms are required.



Acoustic Knowledge Transfer

* Acoustic knowledge transfer:

» Transfer knowledge from the source acoustic

domain to the target ones related to testing
conditions.

» It is also referred to as the supervised domain
adaptation.

* An example of device adaptation
» Trained by data from iPhone (Source domain).

» Adapted to iPad and HomePod (Target domains).
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Bayesian Adaptive Learning Framework

e Bayes’ theory:
p(DA)p(N)
p(D)
» A: model parameters; D: data; S: source domain; T: target domain.

p(A|D) =

* For adaptation setups:
» Prior knowledge learnt from the source domain is encoded in prior distribution:

p(Ar) = p(As|Ds)
» The target domain posterior distribution:
p(Dr|A7)p(As|Ds)
p(Ar| D) =
(Ar|Dr) (D7)

* The posterior is usually intractable and difficult to get.
» An approximation is required: Maximum a posteriori (MAP), Variational Bayes (VB), ...




MAP for GMM-HMM based ASR

* MAP shows good performance for GMM-HMM
based ASR system to handle acoustic mismatches
[Gauvian, 1994; Lee, 2000].

Ap = Wg/\maﬂfp()\ﬂDT) = argmaz p(Dr|Ar)p(Ar)

* Example: GMM and HMM parameters with

conjugated prior distributions:

» HMM parameters: Dirichlet distribution.
» GMM parameters: Normal-Wishart distribution.
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The GMM-HMM system.



MAP for DNN-HMM based ASR

 MAP also shows good performance for DNN-
HMM based ASR system for speaker adaptation
[Huang, 2015; Huang 2017].

* Linear hidden network (LHN) is used to cast
Bayesian assumption.

Losspjap = — IOgP(DT’W) — CVlOgP(Wlhn)
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DNN with linear hidden layer.



Challenges of Bayesian Adaptation for Deep Models

* Traditional Bayesian approaches usually focus on model parameters.
» It works well for traditional statistic models like HMM, GMM, SVM, ...

 For DNN, we have much more parameters than training samples.

» #of para. >> # of data dimension * # of data [Sebastien, 2021].
» Especially for the adaptation scenarios.

* Challenges and problemes:

» Difficult to get accurate estimations of model parameters by Bayesian approaches.
» Curse of dimensionality.
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Deep Latent Variables

* We propose to perform Bayesian adaptive learning on deep latent variables rather

than on DNN weights.

* An unobservable representation of data, corresponding to intermediate hidden embedding from a
specific layer of DNN.

* An example of deep latent variables.
» Zindicates the deep latent variables.
» Prior: p(Z); Posterior: p(Z|X).
» We decouple DNN weights to 6 and w.

X~ pdata(X) —_—




Deep Latent Variables (Cont’d)

* Acoustic scene model embedding.

» 10 different scene classes:
o Airport, metro, ...
» 3 general classes C1-C3:
o Indoor, outdoor, transportation.
» Hidden embedding is generated by a DNN model
and reduced to 2 dimensions.

* Deep latent variable has its own distribution
form.

* Deep latent variable encodes structural
relationships.
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A visualization of deep latent variables [Hu, 2020].




Bayesian Inference of Deep Latent Variables

* Latent variables are introduced in addition to DNN weights.

p(A) =p(Z,0,w) = p(Z|0)p(0)p(w)
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Bayesian Inference of Deep Latent Variables (Cont’d)

* Prior knowledge for target model is learnt from the source domain

p(Zr|0r) = p(Zs|0s,Ds)

e Posterior with latent variables:

p(Dr|Ar)p(0r)p(wr)p(Z5|0s, Ds)

priPr) = p(Dr

e Variational Bayes (VB) based estimation way
» Perform a distribution estimation to obtain the full posterior.



Variational Bayes based Adaptive Learning

e Set a variational distribution to approximate the real distribution.

* Minimize the KLD between them, by

¢ (Ar|Dr) = arg”'gin KL(q(A7|Dr) || p(Ar|Dr))
qc

e Get a full VB expression with Z, 6 and w.
» By taking a non-informative prior over 8 and w, we can arrive at the variational lower bound:

Lr;Dr) =Ez,wqzr)00, D) 108 (D |Z7, 07, 01) — KL(9(Z7 |07, D1) || P(Z7|07))



Variational Bayes based Adaptive Learning (Cont’d)

e Gaussian mean-field variational inference (GMFVI) estimation is used:

» Each hidden embedding is assumed to be sampled from individual Gaussians:

¢(Z)0,D) HN Z@: 1) (e)2T)

» Final learning objective:
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Experimental Setup of Acoustic Scene Classification

Data set: DCASE 2020 ASC data set.

 Code available:

https://github.com/MihawkHu/ASC_Knowledge_Transfer
ASC Train —
. < -,
* Source domain data: system b4
» Recorded by a Zoom F8 audio recorder.
» ~10K training audio clips.
Adapt

Target domain data:

» Recorded by 8 different devices:
o iPhone SE, Samsung Galaxy S7, ...
» Each has 750 training audio clips.

Two state-of-the-art models [Hu, 2020] are used:
RESNET and FCNN.



Teacher-Student Learning Family

* Teacher-student learning (TSL) is used as a
comparison.

» Transfers knowledge from the teacher network to the
student network.

» The basic approach is to minimize the KLD between
outputs of teacher model and student model.

 Point estimation vs. distribution estimation.
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Teacher-Student Learning Family (Cont’d)

* 13 recent cut-edging knowledge transfer methods compared in our experiments:
TSL: Teacher-student learning [Li, 2014; Hinton, 2015].

NLE: Neural label embedding [Meng, 2020].

Fitnets: Hints for thin nets [Romero, 2014].

AT: Attention transfer [Zagoruyko, 2016].

AB: Activation boundaries [Heo, 2019].

VID: Variational information distillation [Ahn, 2019].

FSP: Flow of solution procedure [Yim, 2017].

COFD: Comprehensive overhaul feature distillation [Heo, 2019].
SP: Similarity preserving [Tung, 2019].

CCKD: Correlation congruence knowledge distillation [Peng, 2019].
PKT: Probabilistic knowledge transfer [Passalis, 2018].

NST: Neuron selectivity transfer [Huang, 2017].

RKD: Relational knowledge transfer [Park, 2019].

VVVVYVVVVVVYVYVYVY

* All above are implemented and compared. Some are presented in the next few
slides.



Experimental Results on Acoustic Scene Classification (1/5)

RESNET FCNN
Method avg% =+ std avg% =+ std
Source. 37.70 37.13
No transfer H54.29 + 0.76 49.97 + 2.70
One-hot 63.76 £+ 0.59 64.45 + 0.51
TSL 68.04 + 0.34 66.27 + 0.46
NLE 65.64 + 0.53 64.47 + 0.59
AT 63.73 + 0.81 64.16 £+ 0.49
SP 64.57 4+ 0.76 65.74 + 0.37
RKD 65.28 + 0.81 65.63 4+ 0.22
VBKT-GMFVI || 69.58 4+ 0.49 | 69.96 + 0.13

e Accuracies on source device data:
> RESNET: 79.09 %, FCNN: 79.70 %.



Experimental Results on Acoustic Scene Classification (2/5)

* Accuracies on source device data:

» RESNET: 79.09 %, FCNN: 79.70 %.

RESNET FCNN
Method avg% =+ std avg% =+ std
Source. 37.70 37.13
No transfer 54.29 + 0.76 49.97 £+ 2.70
One-hot 63.76 £+ 0.59 64.45 4+ 0.51
TSL 68.04 + 0.34 66.27 £+ 0.46
NLE 65.64 + 0.53 064.47 + 0.59
AT 63.73 = 0.81 64.16 + 0.49
SP 64.57 £+ 0.76 65.74 + 0.37
RKD 65.28 + 0.81 65.63 = 0.22
VBKT-GMFVI || 69.58 + 0.49 | 69.96 + 0.13

* Device mismatches causes huge
degradations when directly applying the
source model.
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Experimental Results on Acoustic Scene Classification (3/5)

* Accuracies on source device data:

» RESNET: 79.09 %, FCNN: 79.70 %.

RESNET FCNN

avg7/o & st avg7/o = st * Device mismatches causes huge degradation
Source. 37.70 37.13 when directly applying the source model.
No transfer 54.29 £+ 0.76 49.97 + 2.70
One-hot 63.76 = 0.59 | 64.45 = 0.51 * Fine-tuning with target data can help ease
TSL 68.04 £+ 0.34 66.27 £+ 0.46 the mismatch issue.
NLE 65.64 + 0.53 | 64.47 + 0.59
AT 63.73 + 0.81 | 64.16 + 0.49
SP 64.57 + 0.76 | 65.74 + 0.37
RKD 65.28 + 0.81 | 65.63 £ 0.22
VBKT-GMFVI | 69.58 + 0.49 | 69.96 + 0.13
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Experimental Results on Acoustic Scene Classification (4/5)

RESNET FCNN
Method avg% =+ std avg% =+ std
Source. 37.70 37.13
No transfer H4.29 + 0.76 49.97 + 2.70
One-hot 63.76 £+ 0.59 64.45 + 0.51
TSL 68.04 4+ 0.3 66.27 + 0.46
NLE 65.64 + 0.5 64.47 + 0.59
AT 63.73 £ 0.8 64.16 £+ 0.49
SP 64.57 + 0.7 65.74 + 0.37
RKD 65.28 + 0.8 65.63 4+ 0.22
VBKT-GMFVI || 69.58 4+ 0.49 | 69.96 + 0.13

Accuracies on source device data:
> RESNET: 79.09 %, FCNN: 79.70 %.

Device mismatches causes huge degradation
when directly applying the source model.

Fine-tuning with target data can help ease
the mismatch issue.

Knowledge transfer algorithms show
advantages over simply fine-tuning.
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Experimental Results on Acoustic Scene Classification (5/5)

RESNET FCNN
Method avg% =+ std avg% =+ std
Source. 37.70 37.13
No transfer H54.29 + 0.76 49.97 + 2.70
One-hot 63.76 £+ 0.59 64.45 + 0.51
TSL 68.04 + 0.34 66.27 + 0.46
NLE 65.64 + 0.53 64.47 + 0.59
AT 63.73 + 0.81 64.16 £+ 0.49
SP 64.57 4+ 0.76 65.74 + 0.37
RKD 65.28 + 0.81 65.63 4+ 0.22
VBKT-GMFVI || 69.58 4+ 0.49 | 69.96 + 0.13

Accuracies on source device data:
> RESNET: 79.09 %, FCNN: 79.70 %.

Device mismatches causes huge degradation
when directly applying the source model.

Fine-tuning with target data can help ease
the mismatch issue.

Knowledge transfer algorithms show
advantages over simply fine-tuning.

Our proposed VBKT method improves
performance on target devices and
outperforms all others.



Appendix: More Results and Analysis

Effects of Hidden Embedding Depth

» Methods use only one hidden layer are compared.

744 —e— Fitnets
SP
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e Last layer (Conv8) shows best results than
others.

* Layers closer to output show better results.
» Better transferable properties.

Accuracy on Device s3 (%)

62

Conv2 Conv4d Convé  ConvS8

* The proposed method consistently
outperforms all others.
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Appendix: More Results and Analysis

* Visualization of intra-class discrepancy

30 samples from the same class are randomly
selected.

L2 distance between model outputs are
computed and visualized.

Darker color means bigger intra-class
discrepancy.

* The proposed method has consistent

smaller intra-class discrepancy than others.

It has more discriminative information and
better cohesion of instances.
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