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OVERVIEW
To address acoustic mismatches between training
and testing conditions, we propose a variational
Bayesian (VB) approach to learning distributions
of latent variables in deep neural network (DNN)
models for cross-domain knowledge transfer.
Experimental results on device adaptation in
acoustic scene classification show that our pro-
posed approach can obtain good improvements
on target devices, and consistently outperforms
13 SOTA knowledge transfer algorithms.
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BAYESIAN ADAPTIVE LEARNING

The classical Bayes’ theory
λ: model parameters.
D: data.

p(λ|D) =
p(D|λ)p(λ)

p(D)
.

For Adaptation Scenarios
S: source domain.
T : target domain.

We have prior knowledge learnt from the source
domain to be encoded in the prior distribution:

p(λT ) = p(λS |DS).

The target domain posterior distribution:

p(λT |DT ) =
p(DT |λT )p(λS |DS)

p(DT )
.

The posterior is usually intractable and difficult
to get, thus an approximation is required, such as
Maximum a posterior (MAP), variational Bayes
(VB), Markov chain Monte Carlo (MCMC), ...
The VB is used in this work.

VARIATIONAL BAYESIAN KNOWLEDGE TRANSFER
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Figure 1: Illustration of the proposed knowledge transfer framework.

Knowledge Transfer of Latent Variables
Deep latent variable: An unobservable represen-
tation of data, corresponding to intermediate hid-
den embedding from a specific layer of DNN.
We propose to perform Bayesian adaptive lear-
ing on deep latent variables rather than on model
weights.
Latent variables are introduced to model parame-
ters λ, as shown in Figure 1:

p(λ) = p(Z, θ, ω) = p(Z|θ)p(θ)p(ω).

Posterior of latent variables for target domain:

p(λT |DT ) =
p(DT |λT )p(θT )p(ωT )p(ZS |θS ,DS)

p(DT )
.

Variational Bayesian Knowledge Transfer
Steps: 1) Set a variational distribution q.
2) Minimize the KLD between variational distri-
bution and real distribution.
3) Take a non-informative prior over θ and ω.
4) Perform Gaussian mean-field variaitonal infer-
ence (GMFVI) estimation.
Final learning objective:
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EXPERIMENTAL EVALUATIONS

Selected Evaluation Results
Each method is tested with and without the com-
bination of the TSL. Please refer to our paper for
more details.

Method RESNET
avg. (%)

RESNET
w/ TSL
avg. (%)

FCNN
avg. (%)

FCNN
w/ TSL
avg. (%)

Source. 37.70 - 37.13 -
No trans. 54.29 - 49.97 -
One-hot 63.76 - 64.45 -

TSL 68.04 68.04 66.27 66.27
NLE 65.64 67.76 64.47 64.53
AT 63.73 68.06 64.16 66.35
SP 64.57 68.45 65.74 67.36
RKD 65.28 68.46 65.63 67.27

VBKT 69.58 69.90 69.96 70.50

Data set: DCASE 2020 task1a development data
set. Device adaptation is performed from 1 source
recorder to 8 target recorders.

Effects of Hidden Embedding Depth
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VISUALIZATION ANALYSIS

Visualization of Intra-Class Discrepancy

• 30 samples from the same class are ran-
domly selected.

• L2 distance between model outputs are
computed and visualized.

• Darker color means bigger intra-class dis-
crepancy.

The proposed method has consistent smaller
intra-class discrepancy than others. It has more
discriminative information and better cohesion of
instances.

MORE INFORMATION
Code available:
https://github.com/MihawkHu/ASC_
Knowledge_Transfer

https://github.com/MihawkHu/ASC_Knowledge_Transfer
https://github.com/MihawkHu/ASC_Knowledge_Transfer
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