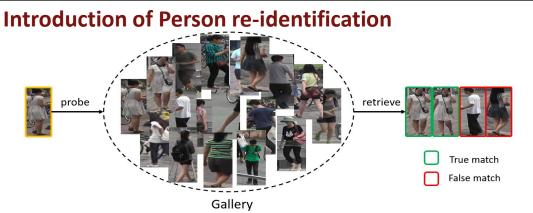


PROGRESSIVE-GRANULARITY RETRIEVAL VIA HIERARCHICAL FEATURE ALIGNMENT FOR PERSON RE-IDENTIFICATION

Zhaopeng Dou, Zhongdao Wang, Yali Li, Shengjin Wang*

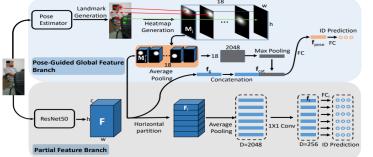


Person re-identification (re-ID) aims at retrieving images of a specific person from a large database.

A key challenge: occlusions \rightarrow feature misalignment

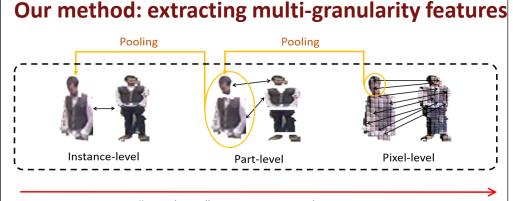
- Occlusions result in feature misalignment issue
- Occlusions bring additional noise

Previous arts: part matching via external model



Limitations:

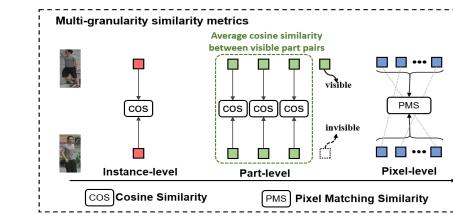
- It brings irretrievable errors when external models fail
- Part features are still coarse-grained. It may fail when a part itself is partially occluded.



"top-down" perception mechanism

We extract instance-level, part-level and pixel-level features for an image. These features are inherently related but different in perceptual granularity. They can provide complementary information.

Our method: alignment-based similarity metric





To efficiently utilize the complementary information from these features, we propose a progressive retrieval manner. We first use the instance similarity to rank the gallery. Then we gradually add the part- and pixel-level metric to re-rank the gallery and narrow it down.

Results

Table 1. Performance comparison on Occluded-Duke [4]

	Methods	Backbone	Occluded-Duke								
	Methous		R@1	mAP		Methods	Backbone	Market-1501		Duke	
_	PCB+RPP [8]	ResNet50	42.6	33.7		Methods	Dackoone	R@1	mAP	R@1	mAP
	SFR [21]	ResNet50	42.3	32.0		PCB+RPP [8]	ResNet50	92.3	77.4	81.8	66.1
	PGFA [4]	ResNet50	51.4	37.3		PGFA [4]	ResNet50	91.2	76.8	82.6	65.5
	HOReID [6]	ResNet50	55.1	43.8		SSP-ReID [23]	ResNet50	92.5	75.8	81.8	68.9
-	PGR (Ours)	ResNet50	62.8	50.1	-	HOReID [6]	ResNet50	94.2	84.9	86.9	75.6
=						PGR (Ours)	ResNet50	94.8	85.3	87.1	76.5
	ISP [7]	HRNet-W32	62.8	52.3	-	ISP [7]	HRNet-W32	95.3	88.6	89.6	80.0
	PAT [22]	transformer	64.5	53.6		PAT [22]	transformer	95.4	88.2	88.8	78.2
_	PGR (Ours)	HRNet-W32	69.0	57.4	-	PGR (Ours)	HRNet-W32	95.8	89.3	90.9	81.0

Fig. 4. Visualization of the hierarchical feature alignment. (a) the learned parts. (b) the mined pixel correspondences.

For each type of feature, we propose an alignment-based similarity metric. The main idea is to consider the instance-level, part-level and pixel-level correspondences.

Our method: progressive-granularity retrieval

Table 2. Performance comparison on holistic-body datasets Market-1501 [16] and DukeMTMC-reID [17]

Acknowledgement: This work was supported by the state key development program in 14th Five-Year under Grant No. 2021YFF0602103,

2021YFF0602102, 2021QY1702. We also thank for the research fund under Grant No.2019GQG0001 from the Institute for Guo Qiang, Tsinghua University.