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Deformable VisTR:
Spatio-temporal deformable attention for video instance segmentation
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@ Experiments:

Attention in VIsTR , ,
Comparison with state-of-the-arts
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* For each Query element (©) , attention is computed with HXW XT key elements (™)
* All the entries use ResNet-50 [12] as

backbone. The methods are listed in
temporal order. “ tick” indicates multi-scale
input images during training. “double tick”
indicates stronger data augmentation (e.g.,
additional data [17, 4], random crop|3])

*For HXW XT query elements the computational complexity for attention is O(H2X
W2xT?2xC)
e C isthe channel dimension of the feature

Motion blurs

Experiments:

Deformable VisTR Ablation with different K

Transformers
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(Our contribution)

feature. K = 32 gives the best result.

*\/isTR takes the entire clip as input and leverages the transformer to * For each Query element (o), attention is computed with K key elements (m)

conduct VIS * For HXW XT query elements the computational complexity for attention is O(HXW XT X
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