

Deformable VisTR: Spatio-temporal deformable attention for video instance segmentation

Sudhir Yarram¹, Jialian Wu¹, Pan Ji², Yi Xu², Junsong Yuan¹ ¹University at Buffalo ²OPPO US Research Center, InnoPeak Technology Inc.

ning time (GPU Hours)	Training Epochs	Accuracy (mAP(%))
1000	\sim 500	35.6
120	50	34.6

\mathcal{D}
Con
Metho
Mask SipMa STEm Comp SGNe STMa Cross Query VisTR
Defor
 All bac tem inp ind adc
6

References: [1] End-to-End Video Instance Segmentation with Transformers, CVPR'21 [2] Video instance segmentation, CVPR'19 [16] Sipmask: Spatial information preservation for fast im- age and video instance segmentation, ECCV'20 [21] Instances as queries, ICCV'21

Github: https://github.com/skrya/DefVIS

Experiments: nparison with state-of-the-arts Fully FPS AP Aug. End-to-End Track [2] CVPR'19 28.6 30.3 ask [16] _____ 34.1 33.7 30.6 $nSeg [4]_{ECCV'20}$ 4.4 \checkmark pFeat [17] 32.8 35.3 \checkmark 34.8 et [18] _{CVPR'21} 19.8 ask [19] _{CVPR'21} 33.5 28.6 39.8 34.8 VIS [20] yInst [21] 32.3 34.6 **R** [1] _{CVPR'21} **30.0 35.6** rmable VisTR 33.0 34.6

the entries use ResNet-50 [12] as ckbone. The methods are listed in nporal order. "tick" indicates multi-scale out images during training. "double tick" licates stronger data augmentation (e.g., ditional data [17, 4], random crop[3])

Experiments: Ablation with different **K**

backbone	$\mid K$	AP
ResNet-50	16	33.8
ResNet-50	32	34.6

Ablation of STDeformAttn module.

K is the number of key points for each query

feature. K = 32 gives the best result.