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✓ Clinical challenge: interpretation of fetal health from simultaneous
measurements of fetal heart rate and uterine activity during labor.

✓ Current approach: Visual inspection of cardiotocogram by medical
experts.

✓ Hypothesis: Unsupervised training on healthy measurements
provides a framework for anomaly detection of fetal health.

✓ Goal: An objective method for the real-time identification of
anomalies in fetal health, useable for clinical decision support.

✓Method: An adapted CPC model [1] trained on healthy data detects
an absence of healthy features or an abnormal change in the
fetal cardiac recording (FHR), conditioned upon the uterine
contractions (toco).

PROBLEM DEFINITION

REFERENCES

[1] Oord et al. (2018). Representation learning with contrastive predictive coding.

Biomedical diagnostics lab

FUTURE WORK

Evaluation should be done on a bigger dataset annotated by multiple 
medical experts and should include measurements with an 
unhealthy outcome as well.
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CUSTOM TRAINING LOSS RESULTS

ADAPTED CPC FRAMEWORK

✓Model trained on healthy data

✓ Child’s toco-FHR interaction modeled in conditional prediction

✓Minute-to-minute scoring achieved by 1-minute windows

Average MAE for future predictions used as anomaly metric M[t]

✓ Cardiac prediction conditioned upon uterine contractions

✓ Recurrent predictor network

✓ Sampling module during training

ANOMALY SCORE

For 𝐾 future windows, loss 𝐿 𝑡 is given by
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with
𝐿𝑠𝑖𝑚 𝑡 = 1 − 𝑐𝑜𝑠𝑆𝑖𝑚(ො𝒛𝐻 𝑡 , 𝒛+[𝑡])

and
𝐿𝑐𝑜𝑛𝑡𝑟 𝑡 = max(0,𝑀𝑆𝐸 ො𝒛𝐻 𝑡 , 𝒛+[𝑡] − min
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(ො𝒛𝐻 𝑡 , 𝒛−))

𝐿𝑐𝑜𝑛𝑡𝑟 is used to prevent trivial solutions, drops out when the MSE 
for the negative samples exceeds the MSE for the positive samples.

Results are presented for the 10-window moving average of model
output and grouped according to expert labels.

Combining the data for six measurements with a healthy outcome
gives a correlation of 0.70 between model output and expert labels.

ROC-curves yield AUC values ≥ 0.78 for distinctions between normal,
suspicious and anomalous events.

AUC = 0.96 for the most important distinction between normal and
anomalous events.
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