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Structured Tucker Decomposition

The Tucker decomposition of the tensor with multilinear rank
(R1,R2,R3) will be denoted as a quartet [[K,A,B,C]] with a core
tensor K of the size R1 × R2 × R3 and factor matrices A,B,C of
the sizes Ii × Ri , i = 1, 2, 3, respectively, such that

Tijk ≈
R1∑
p=1

R2∑
q=1

R3∑
r=1

KpqrAipBjqCkr (1)

Symbolically, we shall write

T ≈ [[K,A,B,C]] . (2)

Special cases: (1) CPD, (2) tensor chain (ring), (3) BTD
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Examples: (1) Block term decomposition

(2) Block term decomposition with overlapping blocks
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The task is to minimize the criterion

ϕ(θ) = ‖T − [[K,A,B,C]]‖2
F (3)

or (in the incomplete tensor case)

ϕW (θ) = ‖W1/2 ? (T − [[K,A,B,C]])‖2
F (4)

with respect to components (vectors) of

θ = [K(L); vec A; vec B; vec C] (5)

The weighting option allows to handle incomplete tensors
and facilitate a tensor imputation.
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Krylov-Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm consists in a sequence of
iterations

θ ← θ′ = θ − (H + µI)−1g

where an error gradient, g, and an approximate Hessian H are
defined through a Jacobian matrix, J, as

J =
∂vec(T )

∂θ
(6)

g = JTWvec(T − T̂ ) (7)

H = JTWJ (8)

W = diag(vec(W)), applies in case of a weighted decomposition
µ is a damping parameter that is updated through the iterations.
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Krylov-Levenberg-Marquardt Algorithm cont’d

Nearly quadratic convergence

Computationally prohibitive for large problems

Bottleneck:

Computation of the Hessian matrix H (can be large in size)
O(N2)

Inversion of H, or computation of (H + µI)1/2, complexity
O(N3)

In the KLM, the bottleneck is solved !
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Krylov Subspace Approximation

The expression (H + µI)−1g is replaced by the approximation

(H + µI)−1g ≈ 1

µ
g − 1

µ
U(µQ−1 + UTU)−1(UTg) (9)

where columns of matrix U form an orthogonal basis of the linear
hull of

[g,Hg,H2g, . . . ,HM−1g] (10)

and
Q = UTHU . (11)

U and Q can be found by a Gram-Schmidt orthogonalization
procedure, similar to Lanczos algorithm or Arnoldi iteration.
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Fast computing of y = Hx: Let

θ = [vec(K); vec(A); vec(B); vec(C)] . (12)

The Jacobian matrix has now four parts,

J =
∂vec(T )

∂θ
= [JK , JA, JB , JC ] . (13)

We need to deal with products of the type Jx, and therefore, we
write the arbitrary vector x as a concatenation of four parts,

x = [vecXK ; vec XA; vec XB ; vec XC ] (14)

where XK is a tensor of the shape of K, and XA,XB , and XC are
matrices of the sizes of A,B and C, respectively.
Similarly, y = Hx would have four parts as well,

y = [vecYK ; vec YA; vec YB ; vec YC ] . (15)
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For the unweighted case,

YK = [[Z,AT ,BT ,CT ]] YA = Z(1)[[K, IR1 ,B,C]]T(1)

YB = Z(2)[[K,A, IR2 ,C]]T(2) YC = Z(3)[[K,A,B, IR3 ]]T(3)

where

Z = [[XK ,A,B,C]] + [[K,XA,B,C]]

+[[K,A,XB ,C]] + [[K,A,B,XC ]] . (16)

The error gradient is g = [gK ; gA; gB ; gC ]

gK = vec [[E,AT ,BT ,CT ]] gA = vec {E(1)[[K, IR1 ,B,C]]T(1)}

gB = vec {E(2)[[K,A, IR2 ,C]]T(2)} gC = vec {E(3)[[K,A,B, IR3 ]]T(3)} .
E = T − [[K,A,B,C]] .
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Extensions

Weighted decompositions

Linear transformation of the estimated parameters (e.g.
symmetric or partially symmetric decompositions such as, e.g.
B = C

nonnegativity constraints

constrains on sensitivity

s(K,A,B,C) = lim
σ2→0

1

σ2
E{‖[[K + δK,A + δA,

B + δB,C + δC]]− [[K,A,B,C]]‖2
F} , (17)

where δK, δA, δB and δC are random Gaussian-distributed
perturbations of the core tensor and the factor matrices with i.i.d
elements N (0, σ2).
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Example (BTD)

Block-diagonal core tensor K of the size 15× 15× 15 with
three blocks of the size 5× 5× 5 on its main diagonal, at
random, having i.i.d. N (0, 1) distribution.

The factor matrices A,B,C have the size 12× 15 and the
tensor T = [[K,A,B,C]] has the size 12× 12× 12. It means
that T having 123 = 1728 elements is smaller in size than the
core tensor. The number of the model parameters is
3× 53 + 3× 12× 15 = 915.

No additive noise.

We compare the performance of three decomposition algorithms:
(1) KLM with M = 30, (2) KLM with bounded sensitivity and
M = 30, and (3) the NLS algorithm of Tensorlab.
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KLM KLM-BND NLS

ERROR 6.2 3.9 6.5
RATIO OF SUCCESS. RUNS 12% 39% 12%

TIME [s] 22.2 43.9 238.6
SENSITIVITY 3.56 · 107 0.25 · 107 3.49 · 107

Table 1. Median fitting error per tensor element, ratio of successful runs,

time of execution, and median sensitivity of output.

Fig. 1. Medians of the learning curves.
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Conclusions

We presented novel algorithms for structured or constrained
Tucker tensor decomposition

In the paper, we presented an application in block term
decomposition, tensor chain modeling, classification of
handwritten digits, and the compression of convolutional
layers in neural networks.

The KLM algorithm allows to seek decompositions with
limited sensitivity.

Matlab codes are available on the Internet at
https://github.com/Tichavsky/tensor-decomposition
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