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Structured Tucker Decomposition

The Tucker decomposition of the tensor with multilinear rank
(R1, R2, R3) will be denoted as a quartet [[IC, A, B, C]] with a core
tensor IC of the size Ry X Ry X R3 and factor matrices A, B, C of
the sizes I; x R;, i = 1,2, 3, respectively, such that

R R Rs

Tk~ YD > KparAipBig Cir (1)
p=1qg=1r=1
Symbolically, we shall write

T =~ [[K,A,B,C]] . (2)

Special cases: (1) CPD, (2) tensor chain (ring), (3) BTD
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Examples: (1) Block term decomposition
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(2) Block term decomposition with overlapping blocks

Petr Tichavsky, Anh-Huy Phan, and Andrzej Cichocki Krylov-Levenberg-Marquardt Algorithm for Structured Tucker Te



The task is to minimize the criterion
0(0) = I T~ [IK. A, B, Cl|||? (3)
or (in the incomplete tensor case)
pw(6) = W2+ (T —[IKC, A, B.CI)) |1 (4)
with respect to components (vectors) of
0 = [IC(L); vec A; vec B; vec C] (5)

The weighting option allows to handle incomplete tensors
and facilitate a tensor imputation.

Petr Tichavsky, Anh-Huy Phan, and Andrzej Cichocki Krylov-Levenberg-Marquardt Algorithm for Structured Tucker Te



Krylov-Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm consists in a sequence of
iterations
060 =60—(H+u) g

where an error gradient, g, and an approximate Hessian H are
defined through a Jacobian matrix, J, as

_ Ovec(T)
b= —55 (6)
g = J"Wvec(T - 7) (7)
H = J7wJ (8)

W = diag(vec(W)), applies in case of a weighted decomposition
i is a damping parameter that is updated through the iterations.
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Krylov-Levenberg-Marquardt Algorithm cont’'d

o Nearly quadratic convergence
@ Computationally prohibitive for large problems
Bottleneck:

o Computation of the Hessian matrix H (can be large in size)
O(N?)

@ Inversion of H, or computation of (H + u1)'/2, complexity
O(N3)

In the KLM, the bottleneck is solved !
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Krylov Subspace Approximation

The expression (H + pl)~1g is replaced by the approximation
1 1
(Htu) g~ g - U(Q+UTU)(UTg)  (9)

where columns of matrix U form an orthogonal basis of the linear
hull of

[g,Hg, H?g, ..., HM 1g] (10)

and
Q=UTHU. (11)

U and Q can be found by a Gram-Schmidt orthogonalization
procedure, similar to Lanczos algorithm or Arnoldi iteration.
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Fast computing of y = Hx: Let

0 = [vec(IC); vec(A); vec(B); vec(C)] . (12)
The Jacobian matrix has now four parts,

J:a\/e(;:é’]-):[JK7JAaJBaJC] . (13)

We need to deal with products of the type Jx, and therefore, we
write the arbitrary vector x as a concatenation of four parts,

x = [vec X k; vec X ; vec Xg; vec X¢| (14)

where X i is a tensor of the shape of IC, and X4, Xz, and X¢ are
matrices of the sizes of A, B and C, respectively.
Similarly, y = Hx would have four parts as well,

y = [vec Yk;vecYa;vecYg;vecY¢] . (15)
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For the unweighted case,

Yk = [[2,AT,BT,CT]] Ya=Z[[K, 1z B,Cll{
Y = Z(Q)[[’Cv A, IR27 C]](Z) Ve = 2(3)[[’C’ A.B, IR3]](7;’)
where

Z = [[Xk,A,B,C]|+[[K,Xa,B,C]
+[[K,A, X, C]] + [[K, A, B, X(]] - (16)

The error gradient is g = [gk:84:85: 8c]

gk = vec[[,AT,BT,C"]] ga = vec {Ey)[[KC, Ir,, B, Cl] )y}

g = VeC{E(2)[[’C7A’lR2vC]](—g)} gC:VeC{E(3)[[7C7Aan|R3]](T3)}‘
E = T-[K,AB,(C].
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Extensions

@ Weighted decompositions

@ Linear transformation of the estimated parameters (e.g.
symmetric or partially symmetric decompositions such as, e.g.
B=C

@ nonnegativity constraints

@ constrains on sensitivity

s(K,A,B,C) = lim %E{||[[K+57C,A+5A,
0200
B +0B,C+4C]] - [[K,A,B,Cll|F} , (17)

where §KC,0A, 6B and §C are random Gaussian-distributed
perturbations of the core tensor and the factor matrices with i.i.d
elements A(0, 02).
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Example (BTD)

@ Block-diagonal core tensor IC of the size 15 x 15 x 15 with
three blocks of the size 5 x 5 x 5 on its main diagonal, at
random, having i.i.d. N(0,1) distribution.

@ The factor matrices A, B, C have the size 12 x 15 and the
tensor T = [[KC, A, B, C]] has the size 12 x 12 x 12. It means
that 7~ having 123 = 1728 elements is smaller in size than the
core tensor. The number of the model parameters is
3 x 5343 x 12 x 15 = 915,

o No additive noise.
We compare the performance of three decomposition algorithms:

(1) KLM with M = 30, (2) KLM with bounded sensitivity and
M = 30, and (3) the NLS algorithm of Tensorlab.
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KLM KLM-BND NLS
ERROR 6.2 3.9 6.5
RATIO OF SUCCESS. RUNS 12% 39% 12%
TIME [s] 22.2 43.9 238.6
SENSITIVITY 3.56-107 | 0.25-107 | 3.49-107

Table 1. Median fitting error per tensor element, ratio of successful runs,
time of execution, and median sensitivity of output.
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Fig. 1. Medians of the learning curves.
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Conclusions

@ We presented novel algorithms for structured or constrained
Tucker tensor decomposition

@ In the paper, we presented an application in block term
decomposition, tensor chain modeling, classification of
handwritten digits, and the compression of convolutional
layers in neural networks.

@ The KLM algorithm allows to seek decompositions with
limited sensitivity.

@ Matlab codes are available on the Internet at
https://github.com/Tichavsky/tensor-decomposition
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