Point-Mass Filter with Decomposition of Transient Density

Petr Tichavský

The Czech Academy of Sciences Institute of Information Theory and Automation Prague, Czech Republic

Ondřej Straka, Jindřich Duník

University of West Bohemia, Pilsen, Czech Republic

ICASSP 2022, Singapore

Abstract

- A novel functional decomposition of the transient density describing the system dynamics is proposed.
- The decomposition separates the density into functions of the future and current states.
- The performance of the proposed algorithm is illustrated in a terrain-aided navigation scenario.

Problem Formulation

Consider a nonlinear stochastic dynamic system with additive noises

$$\mathbf{x}_{k+1} = \mathbf{f}_k(\mathbf{x}_k, \mathbf{u}_k) + \mathbf{w}_k, \qquad k = 0, 1, 2, \dots, T,$$
(1)
$$\mathbf{z}_k = \mathbf{h}_k(\mathbf{x}_k) + \mathbf{v}_k, \qquad k = 0, 1, 2, \dots, T,$$
(2)

where $\mathbf{x}_k \in \mathcal{R}^{n_x}$, $\mathbf{u}_k \in \mathcal{R}^{n_u}$, and $\mathbf{z}_k \in \mathcal{R}^{n_z}$ represent the *unknown* state of the system and the *known* input and measurement at time instant k, respectively.

The general solution to the state estimation is given by the BRRs for the conditional PDFs computation [4]

$$p(\mathbf{x}_{k}|\mathbf{z}^{k}) = \frac{p(\mathbf{x}_{k}|\mathbf{z}^{k-1})p(\mathbf{z}_{k}|\mathbf{x}_{k})}{p(\mathbf{z}_{k}|\mathbf{z}^{k-1})},$$

$$p(\mathbf{x}_{k+1}|\mathbf{z}^{k}) = \int p(\mathbf{x}_{k+1}|\mathbf{x}_{k})p(\mathbf{x}_{k}|\mathbf{z}^{k})d\mathbf{x}_{k},$$
(3)

 $p(\mathbf{x}_{k+1}|\mathbf{z}^k)$ is the one-step predictive PDF $p(\mathbf{x}_k|\mathbf{z}^k)$ is the filtering PDF

Point Mass Density Approximation

The conditional PDF $p(x_k | \mathbf{z}^m)$ is approximated by a *piece-wise* constant point-mass density $\Xi_{k|m}$ defined at the set of the discrete grid points $\xi_k = \{\xi_k^{(i)}\}_{i=1}^N, \xi_k^{(i)} \in \mathcal{R}$, as follows

$$\Xi_{k|m} \triangleq \sum_{i=1}^{N} P_{k|m}^{(i)} S\{x_k; \xi_k^{(i)}, \Delta_k\},\tag{5}$$

 $P_{k|m}^{(i)} \text{ is the conditional PDF } p(x_k|\mathbf{z}^m) \text{ at the } i\text{-th grid point } \xi_k^{(i)},$ $S\{x_k; \xi_k^{(i)}, \Delta_k\} = \begin{cases} 1, \text{ if } |x_k - \xi_k^{(i)}(j)| \leq \frac{\Delta_k}{2}, \\ 0, \text{ otherwise.} \end{cases} \text{ is the selection}$ function

function

Transient density decomposition

Assume that the state transient PDF can be decomposed as

$$p(\mathbf{x}_{k+1}|\mathbf{x}_k) \approx \sum_{r=1}^{R} \mathcal{F}_{1r}(\mathbf{x}_{k+1}) \mathcal{F}_{2r}(\mathbf{x}_k)$$
(6)

where $\mathcal{F}_{1r}(\cdot), \mathcal{F}_{2r}(\cdot), r = 1, ..., R$ are suitable (non-negative) functions, known in advance, and R is the order of the approximation called *rank*. Then, the Chapman-Kolmogorov equation (4) can be written as

$$p(\mathbf{x}_{k+1}|\mathbf{z}^k) \approx \sum_{r=1}^R \mathcal{F}_{1r}(\mathbf{x}_{k+1}) \int \mathcal{F}_{2r}(\mathbf{x}_k) p(\mathbf{x}_k|\mathbf{z}^k) d\mathbf{x}_k .$$
(7)

Often, the transient PDF

$$p(\mathbf{x}_{k+1}|\mathbf{x}_k) = p_{\mathbf{w}_k} (\mathbf{x}_{k+1} - \mathbf{f}_k(\mathbf{x}_k, \mathbf{u}_k))$$

is a function of \mathbf{x}_{k+1} and \mathbf{f}_k , where $\mathbf{f}_k = \mathbf{f}_k(\mathbf{x}_k, \mathbf{u}_k)$. Then,

$$p(\mathbf{x}_{k+1}|\mathbf{x}_k) = p_{\mathbf{w}_k} (\mathbf{x}_{k+1} - \mathbf{f}_k)$$
.

Subsequently, the decomposition (6) in the form

$$p_{\mathbf{w}_{k}}(\mathbf{x}_{k+1} - \mathbf{f}_{k}) \approx \sum_{r=1}^{R} \mathcal{F}_{1r}(\mathbf{x}_{k+1}) \mathcal{F}_{2r}(\mathbf{f}_{k})$$
(8)

needs to be computed only over a region of differences $\mathbf{x}_{k+1} - \mathbf{f}_k$. If the function $p_{\mathbf{w}_k}(\mathbf{x}_{k+1} - \mathbf{f}_k)$ is symmetric (invariant) with respect to permutation of its arguments \mathbf{x}_{k+1} and \mathbf{f}_k , we may assume that the decomposition (8) is symmetric as well, i.e., $\mathcal{F}_{1r} = \mathcal{F}_{2r}$ for $r = 1, \ldots, R$.

Petr Tichavský, Ondřej Straka, Jindřich Duník Point-Mass Filter with Decomposition of Transient Density

Gaussian Transient PDF

Consider first the scalar case, i.e, $n_x = 1$, and process noise variance var $[w_k] = \sigma^2 = 1$

$$p(x_{k+1}|x_k) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x_{k+1}-f_k)^2} .$$
(9)

Let the transient PDF be evaluated in the grid $x_{k+1} \in [-L, L]$, $f_k \in [-L, L]$, L = 10, with granularity 1/10 to obtain a $D \times D$ matrix **M**, D = 201.

Then, **M** is subject to a symmetric nonnegative matrix factorization $\mathbf{M} = \mathbf{W}\mathbf{W}^{T}$, where $\mathbf{W} \in \mathcal{R}^{D \times R}$. What rank should one to use ?

Columns of **W** for R = 20 look like

The columns of **W** will be modeled by the functions $\mathcal{F}_{1r} = \mathcal{F}_{2r} = \mathcal{F}_r$ as

$$\mathcal{F}_r(x) = h \cdot e^{-\frac{1}{2}(x-m_r)^2/w^2}$$
 (10)

parameterized by the peak position m_r , width w, and height h.

The resultant approximation of $p(x_{k+1}|f_k)$ for R = 20

Gaussian Transient PDF in higher dimension Let

$$p(\mathbf{x}_{k+1}|\mathbf{x}_k) = \frac{1}{\sqrt{(2\pi)^{n_k}|\mathbf{Q}|}} e^{-\frac{1}{2}(\mathbf{x}_{k+1}-\mathbf{f}_k)^T \mathbf{Q}^{-1}(\mathbf{x}_{k+1}-\mathbf{f}_k)},$$

where $\mathbf{f}_k = \mathbf{f}_k(\mathbf{x}_k, \mathbf{u}_k)$. Now, if \mathbf{Q} is a diagonal matrix with elements Q^i , $i = 1, ..., n_x$ on its diagonal, then

$$p(\mathbf{x}_{k+1}|\mathbf{x}_k) = \prod_{i=1}^{n_x} \frac{1}{\sqrt{(2\pi)Q^i}} e^{-\frac{1}{2}(\mathbf{x}_{k+1}^i - \mathbf{f}_k^i)^2/Q^i}, \quad (11)$$

where \mathbf{x}_{k+1}^i and \mathbf{f}_k^i are *i*-th elements of \mathbf{x}_{k+1} and \mathbf{f}_k , respectively. The decomposition of the transient PDF as a product of the two scalar decompositions applied to each element \mathbf{x}_{k+1}^i and \mathbf{f}_k^i , $i = 1, \ldots, n_x$.

伺い イヨト イヨト

Terrain-aided navigation

Let a state-space transition be linear, $\mathbf{f}_k(\mathbf{x}_k,\mathbf{u}_k) = \mathbf{x}_k + \mathbf{u}_k$,

 \mathbf{x}_k is a *two*-dimensional state vector describing the vehicle position, $\mathbf{u}_k = [300, 300]^T$ is an available shift vector provided, e.g., by the inertial navigation system or odometer.

The measurement z_k is nonlinear function $h_k(\cdot)$ realized through a terrain map. We compare performance of three point-mass filter algorithms:

- PMF_{TRUE} with a high number of grid points $N = 150^2$
- PMF_{ST} with the traditional computation with $N = 20^2$ and $N = 50^2$
- PMF_D with the *proposed* transient PDF decomposition with $N = 20^2$ and $N = 50^2$ with three different ranks.

Results

Ν		PMF _{STD}	PMF _D		
			R = 10	<i>R</i> = 20	<i>R</i> = 25
20 ²	ΙE	30e-3	130e-3	31e-3	30e-3
	au	96e-4	12e-4	13e-4	14e-4
50 ²	ΙE	49e-4	1147e-4	62e-4	56e-4
	au	229e-3	31e-3	33e-3	33e-3

・ロン ・四 と ・ ヨ と ・ ヨ と ・

æ

Conclusions

- The paper proposed a non-negative functional decomposition of the transition density, through which the convolution in the point-mass filter (PMF) can efficiently be calculated.
- With an appropriate rank of the decomposition, significant computational costs savings can be achieved with only negligible loss of PMF estimate quality.