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Most of RGB-D semantic segmentation methods need to acquire the real depth information for segmenting RGB 1mages ettectively. Therefore, 1it1s |
extremely challenging to take full advantage of RGB-D semantic segmentation methods for segmenting RGB 1mages without the depth input. To :
address this challenge, a general depth removal distillation method 1s proposed to remove depth dependence from RGB-D semantic segmentation |

. . . . l
model by knowledge distillation, which can be employed to any CNN-based segmentation network structure. /

GT: Ground Truth, BL: BaselLine, TN: Teacher Network, SN: Student Network
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