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Abstract

What about?

 Data-driven algorithms for learning compressive sensing measurement
matrices

« Common approach: Ubiquitous I.i.d. Gaussian design

 Ours: Place more energy on the “most important” parts of the signal



Setup

Compressive Sensing Introduction

Recover a target signal X € R” via linear measurements of the form

y = AX + 7

ey E | ” is the measurement vector

. A € R%*" s the measurement matrix

. 7 € RY is the additive noise

 High-dimensional regime £ << n with structure on X



Setup

Compressive Sensing Introduction

» Given both A andy

 Estimate X that ideally closely approximates X.

* Per-entry mean squared error (MSE) criterion for correctness:

]
MSE(x, X) = —||x — ||
I



Objective

In this paper, we focus on the design of A € R**"

» Each row of A independently drawn from the same zero-mean Gaussian
distribution

o But different variances (vl, ‘oo Vn)

n

Z v. = nP for some predefined “power level” P
i=1

« Assume we have access to training data X, ..., X

 Our aim is to choose the values of (v, ...,V ) using the training data
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Method

Two main proposed algorithms

* Variance-Proportional Sampling

Simple variance-proportional sampling (i.e., more energy at locations where
the signal tends to vary more)

* lteratively-Learned Power Allocation

lteratively up-weigh and down-weigh the variance values according to
performance on training data



Variance-Proportional Sampling

Intuitively...

* |f the signals always take near-identical values at certain entries, then it is
wasteful to allocate a large amount of power to them



Variance-Proportional Sampling

Mathematically...

« Compute the empirical variance 81.2 of each signal entry 1 (with respect to the
training data)

e Choose the value such that
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Iteratively-Learned Power Allocation

Intuitively...

« Given the estimate X

 Up-weigh the v; whose corresponding entries 1 were estimated the least
accurately

 Down-weigh those that were estimated the most accurately



Iteratively-Learned Power Allocation

Mathematically...

1
. Proportion parameter a € (O,E)

« Update weight{/lt}tT:1 with 4, > 0
« Number of iterations 7> 0

e Mini-batch size B > (



Iteratively-Learned Power Allocation

Mathematically...

e Initialize (v{, ...,v,) = (P, ..., P)
e Foriterationst=1to7T:

1. Generate a random matrix A according to the current (v, ..., v,)

2. MSE of (X, X) of each signal entry averaged over B training data

3. Top an MSE values: v; = vl-e_ﬂ‘f :

Bottom an MSE values: v; = vie’lf

n
4. Rescale (v, ..., V,) such that Z v, = nP
i=1
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Experiment

Baseline and Data

» Power level P = 1: Baseline A having i.i.d. standard Gaussian entries
« MNIST (28 X 238)
« Cropped CelebA-HQ (128 X 128 X 3)

 Synthetic one-dimensional non-uniform sparse signal (1000 X 1)
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Result
MNIST performance figure

« 50000 training data for empirical
variance 6 (Proportional)

o Batch size B = 20 for each
iteration (Iterative)

» 300 testing data to produce the
average results (Both)

 MSE reduced visibly
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Recovery performance on MNIST data




Result

MNIST variance map

* Naturally place more energy at .
the locations where the MNIST
number strokes lie

/ B
1.0

1.2
1.0
; 0.8

i.i.d gaussian proportional iterative 1.0/10

e As £ increases, the variance
map become less uniform
around the centre of the image

iterative 1.0/30 iterative 8.0/30 iterative 8.0/150

Variance map for MNIST data
(Numbers after iterative approach: the variance of z/ number of measurement )
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Result
CelebA-HQ performance figure

« 2000 training data to compute the &

empirical variance 6> (Proportional)

 Mini-batch size B = 1 for each
iteration (Iterative)

3 testing data to produce the average
results (Both)

 MSE again lower then i.i.d. Gaussian
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Recovery performance on cropped CelebA data



Result

CelebA-HQ variance map

* Proportional places too much
energy around the corners

e |terative instead focuses on the
most “ambiguous” regions, e.g., the
eyes, noses, and lips i.i.d gaussian proportional iterative 16.0/900

Variance map generated for CelebA-HQ
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Result
Synthetic data

* One-dimensional synthetic vector

, C
. The I-th entry of the vector is non-zero with probability min {1,—.} and
l

uniform in [0, 1]

« Compare against a deep learning based auto-encoder approach called
¢ — AE proposed in Shanshan Wu et al. (2019)
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Result

Synthetic performance figure

« 6000 training data to compute the
empirical variance 6> (Proportional)

e Batch size B = 300 for each
iteration (Iterative)

« 2000 testing data to produce the
average results (Both)

* We attain lower MSE and fall only
slightly short of £, — AE
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Recovery performance on synthetic data (noiseless)
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Result

Synthetic variance map

* Similar pattern in proportional and _ i
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Conclusion

* Two data-driven algorithms for learning power allocations in Gaussian
compressive sensing measurement matrices

* Experimentally outperform standard i.i.d. Gaussian measurements under both
sparse and generative priors

* Future work: Identity further areas for improvement and move towards
application-driven experimental settings

20



