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Abstract
What about?

• Data-driven algorithms for learning compressive sensing measurement 
matrices 


• Common approach: Ubiquitous i.i.d. Gaussian design


• Ours: Place more energy on the “most important” parts of the signal
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Setup
Compressive Sensing Introduction 

Recover a target signal  via linear measurements of the form 





•  is the measurement vector


•  is the measurement matrix


•  is the additive noise


• High-dimensional regime  with structure on 

X ∈ ℝn

y = Ax + z

y ∈ ℝℓ

A ∈ ℝℓ×n

z ∈ ℝℓ

ℓ ≪ n x
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Setup
Compressive Sensing Introduction 

• Given both  and 


• Estimate  that ideally closely approximates .


• Per-entry mean squared error (MSE) criterion for correctness:





A y

x̂ x

MSE(x, x̂) =
1
n

∥x − x̂∥2
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Objective
In this paper, we focus on the design of A ∈ ℝℓ×n

• Each row of  independently drawn from the same zero-mean Gaussian 
distribution 


• But different variances  

    for some predefined “power level”  

• Assume we have access to training data  

• Our aim is to choose the values of  using the training data

A

(v1, …, vn)
n

∑
i=1

vi = nP P

x1, …, xm

(v1, …, vn)
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Method
Two main proposed algorithms

• Variance-Proportional Sampling 

Simple variance-proportional sampling (i.e., more energy at locations where 
the signal tends to vary more)


• Iteratively-Learned Power Allocation 

Iteratively up-weigh and down-weigh the variance values according to 
performance on training data
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Variance-Proportional Sampling
Intuitively… 

• If the signals always take near-identical values at certain entries, then it is 
wasteful to allocate a large amount of power to them
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Variance-Proportional Sampling
Mathematically… 

• Compute the empirical variance  of each signal entry  (with respect to the 
training data)


• Choose the value such that


̂σ2
i i

vi = nP ⋅
̂σ2
i

∑n
j=1 ̂σ2

j
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Iteratively-Learned Power Allocation
Intuitively…

• Given the estimate 


• Up-weigh the  whose corresponding entries  were estimated the least 
accurately


• Down-weigh those that were estimated the most accurately

x̂

vi i
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Iteratively-Learned Power Allocation
Mathematically…

• Proportion parameter     

• Update weight  with    


• Number of iterations     

• Mini-batch size  

α ∈ (0,
1
2 )

{λt}T
t=1 λt > 0

T > 0

B > 0
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Iteratively-Learned Power Allocation
Mathematically…

• Initialize 


• For iterations  to  :


1. Generate a random matrix  according to the current 


2. MSE of  of each signal entry averaged over  training data 

3. Top  MSE values:  ; 


Bottom  MSE values:  


4. Rescale  such that 


(v1, …, vn) = (P, …, P)

t = 1 T

A (v1, …, vn)

(x̂, x) B

αn vi = vie−λt

αn vi = vieλt

(v1, …, vn)
n

∑
i=1

vi = nP
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Experiment
Baseline and Data

• Power level : Baseline  having i.i.d. standard Gaussian entries


• MNIST 


• Cropped CelebA-HQ 


• Synthetic one-dimensional non-uniform sparse signal 

P = 1 A

(28 × 28)

(128 × 128 × 3)

(1000 × 1)
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Recovery performance on MNIST data

Result
MNIST performance figure

•  training data for empirical 
variance  (Proportional)


• Batch size  for each 
iteration (Iterative)


•  testing data to produce the 
average results (Both) 


• MSE reduced visibly 

50000
̂σ2

B = 20

300
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Variance map for MNIST data 

(Numbers after iterative approach: the variance of   / number of measurement   )

Result
MNIST variance map

• Naturally place more energy at 
the locations where the MNIST 
number strokes lie


• As  increases, the variance 
map become less uniform 
around the centre of the image

ℓ

ℓz
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Recovery performance on cropped CelebA data

Result
CelebA-HQ performance figure

•  training data to compute the 
empirical variance  (Proportional) 

• Mini-batch size  for each 
iteration (Iterative)


•  testing data to produce the average 
results (Both) 


• MSE again lower then i.i.d. Gaussian

2000
̂σ2

B = 1

3
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Variance map generated for CelebA-HQ

Result
CelebA-HQ variance map

• Proportional places too much 
energy around the corners 


• Iterative instead focuses on the 
most “ambiguous” regions, e.g., the 
eyes, noses, and lips
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Result
Synthetic data

• One-dimensional synthetic vector 


• The -th entry of the vector is non-zero with probability  and 

uniform in 


• Compare against a deep learning based auto-encoder approach called 
 proposed in Shanshan Wu et al. (2019)

i min {1,
c
i }

[0,1]

ℓ1 − AE
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Recovery performance on synthetic data (noiseless)

Result
Synthetic performance figure

•  training data to compute the 
empirical variance  (Proportional) 

• Batch size  for each 
iteration (Iterative)


•  testing data to produce the 
average results (Both) 


• We attain lower MSE and fall only 
slightly short of 

6000
̂σ2

B = 300

2000

ℓ1 − AE
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First 80 entries of the variance map for synthetic data

Result
Synthetic variance map

• Similar pattern in proportional and 
ℓ1 − AE
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Conclusion

• Two data-driven algorithms for learning power allocations in Gaussian 
compressive sensing measurement matrices


• Experimentally outperform standard i.i.d. Gaussian measurements under both 
sparse and generative priors


• Future work: Identify further areas for improvement and move towards 
application-driven experimental settings
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