Data-Driven Algorithms for Gaussian Measurement Matrix Design in Compressive Sensing Presentation Video

Yang Sun and Jonathan Scarlett, National University of Singapore

Abstract What about?

matrices

- Common approach: Ubiquitous i.i.d. Gaussian design
- Ours: Place more energy on the "most important" parts of the signal

Data-driven algorithms for learning compressive sensing measurement

Setup **Compressive Sensing Introduction**

Recover a target signal $\mathbf{X} \in \mathbb{R}^n$ via linear measurements of the form

- $\mathbf{y} \in \mathbb{R}^{\ell}$ is the measurement vector
- $\mathbf{A} \in \mathbb{R}^{\ell \times n}$ is the measurement matrix
- $\mathbf{z} \in \mathbb{R}^{\ell}$ is the additive noise
- High-dimensional regime $\ell \ll n$ with structure on **x**

$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{z}$

Setup **Compressive Sensing Introduction**

- Given both A and y
- Estimate $\hat{\mathbf{x}}$ that ideally closely approximates \mathbf{x} .
- Per-entry mean squared error (MSE) criterion for correctness:
 - $MSE(\mathbf{x}, \hat{\mathbf{x}})$

$$\mathbf{x} = \frac{1}{n} \|\mathbf{x} - \hat{\mathbf{x}}\|^2$$

Objective In this paper, we focus on the design of $A \in \mathbb{R}^{\ell \times n}$

- distribution
- But different variances (v_1, \ldots, v_n)

 $\sum v_i = nP$ for some predefined "power level" *P* i=1

- Assume we have access to training data X₁, ..., X_m

Each row of A independently drawn from the same zero-mean Gaussian

• Our aim is to choose the values of (v_1, \ldots, v_n) using the training data

Method Two main proposed algorithms

Variance-Proportional Sampling

Simple variance-proportional sampling (i.e., more energy at locations where the signal tends to vary more)

Iteratively-Learned Power Allocation

Iteratively up-weigh and down-weigh the variance values according to performance on training data

Variance-Proportional Sampling Intuitively...

wasteful to allocate a large amount of power to them

• If the signals always take near-identical values at certain entries, then it is

Variance-Proportional Sampling Mathematically...

training data)

Choose the value such that

$$v_i = nP \cdot \frac{\hat{\sigma}_i^2}{\sum_{j=1}^n \hat{\sigma}_j^2}$$

• Compute the empirical variance $\hat{\sigma}_i^2$ of each signal entry *i* (with respect to the

Iteratively-Learned Power Allocation Intuitively...

- Given the estimate $\hat{\mathbf{x}}$
- Up-weigh the v_i whose corresponding entries i were estimated the least accurately
- Down-weigh those that were estimated the most accurately

Iteratively-Learned Power Allocation Mathematically...

- Proportion parameter $\alpha \in \left(0, \frac{1}{2}\right)$
- Update weight $\{\lambda_t\}_{t=1}^T$ with $\lambda_t > 0$
- Number of iterations T > 0
- Mini-batch size B > 0

Iteratively-Learned Power Allocation Mathematically...

- Initialize $(v_1, ..., v_n) = (P, ..., P)$
- For iterations t = 1 to T:
 - 1. Generate a random matrix A according to the current (v_1, \ldots, v_n)
 - 2. MSE of $(\hat{\mathbf{x}}, \mathbf{x})$ of each signal entry averaged over B training data
 - 3. Top αn MSE values: $v_i = v_i e^{-\lambda_t}$;

Bottom αn MSE values: $v_i = v_i e^{\lambda_i}$

4. Rescale $(v_1, ..., v_n)$ such that $\sum_{i=n}^{n} v_i = nP$ i=1

Experiment **Baseline and Data**

- Power level P = 1: Baseline A having i.i.d. standard Gaussian entries
- MNIST (28×28)
- Cropped CelebA-HQ $(128 \times 128 \times 3)$
- Synthetic one-dimensional non-uniform sparse signal (1000×1)

Result MNIST performance figure

- 50000 training data for empirical variance $\hat{\sigma}^2$ (Proportional)
- Batch size B = 20 for each iteration (Iterative)
- 300 testing data to produce the average results (Both)
- MSE reduced visibly

Recovery performance on MNIST data

Result **MNIST variance map**

- Naturally place more energy at the locations where the MNIST number strokes lie
- As ℓ increases, the variance map become less uniform around the centre of the image

- 1.4 - 1.2 - 1.0 0.8 0.6

proportional

- 1.05 0.95 0.90

i.i.d gaussian

iterative 1.0/30

iterative 8.0/30

iterative 8.0/150

Variance map for MNIST data

(Numbers after iterative approach: the variance of z / number of measurement ℓ)

Result **CelebA-HQ** performance figure

- 2000 training data to compute the empirical variance $\hat{\sigma}^2$ (Proportional)
- Mini-batch size B = 1 for each iteration (Iterative)
- 3 testing data to produce the average results (Both)
- MSE again lower then i.i.d. Gaussian

Recovery performance on cropped CelebA data

Result **CelebA-HQ** variance map

- **Proportional** places too much energy around the corners
- **Iterative** instead focuses on the most "ambiguous" regions, e.g., the eyes, noses, and lips

i.i.d gaussian

proportional

iterative 16.0/900

Variance map generated for CelebA-HQ

Result Synthetic data

- One-dimensional synthetic vector
- uniform in [0,1]
- Compare against a deep learning based auto-encoder approach called $\ell_1 - AE$ proposed in Shanshan Wu et al. (2019)

• The *i*-th entry of the vector is non-zero with probability $\min\left\{1, \frac{c}{\cdot}\right\}$ and

Result Synthetic performance figure

- 6000 training data to compute the empirical variance $\hat{\sigma}^2$ (Proportional)
- Batch size B = 300 for each iteration (Iterative)
- 2000 testing data to produce the average results (Both)
- We attain lower MSE and fall only slightly short of $\mathcal{E}_1 AE$

Recovery performance on synthetic data (noiseless)

Result Synthetic variance map

 Similar pattern in proportional and $\ell_1 - AE$

First 80 entries of the variance map for synthetic data

- 1.5 - 1.0 0.5 - 0.06

- 0.04

Conclusion

- Two data-driven algorithms for learning power allocations in Gaussian compressive sensing measurement matrices
- Experimentally outperform standard i.i.d. Gaussian measurements under both sparse and generative priors
- Future work: Identify further areas for improvement and move towards application-driven experimental settings