

# DATA-DRIVEN ALGORITHMS FOR GAUSSIAN MEASUREMENT MATRIX DESIGN IN COMPRESSIVE SENSING

## Yang Sun<sup>1</sup> and Jonathan Scarlett<sup>1,2</sup>

<sup>1</sup>Department of Computer Science, National University of Singapore

<sup>2</sup>Department of Mathematics & Institute of Data Science, National University of Singapore

#### HIGHLIGHTS

Two novel compressive sensing measurement matrix designs focusing more energy on the "most important" parts of the signal:

- Variance-Proportional Sampling: place more energy at locations where the signal tends to vary more
- Iteratively-Learned Power Allocation: iteratively up-weigh or down-weigh the energy according to reconstruction quality

#### **MNIST RESULT**







i.i.d gaussian

proportional

iterative  $\mathcal{N}(0,8)/\ell = 30$ 



- Recover  $\mathbf{x} \in \mathbb{R}^n$  via linear measurements  $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{z}$
- ► Given observation  $\mathbf{y} \in \mathbb{R}^{\ell}$ , matrix  $\mathbf{A} \in \mathbb{R}^{\ell \times n}$ , and noise  $\mathbf{z} \in \mathbb{R}^{\ell}$
- High-dimensional regime  $\ell \ll n$  with structure on **x**
- Find a decoder to estimate  $\hat{\mathbf{x}}$
- Performance metric  $MSE(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{n} ||\mathbf{x} \hat{\mathbf{x}}||^2$

## OBJECTIVE

- ► Each row  $\mathbf{A}_i \sim \mathcal{N}(0, v_i)$  with different variances  $(v_1, \ldots, v_n)$
- $\sum_{i=1}^{n} v_i = nP$  for some predefined "power level" *P*
- Assume we have access to training data
- Our aim is to choose  $(v_1, \ldots, v_n)$  using the training data

## VARIANCE-PROPORTIONAL SAMPLING

- First computes the empirical variance  $\hat{\sigma}_i^2$  of each signal entry with respect to the training data
- Then chooses  $v_i \propto \hat{\sigma}_i^2$ , such that  $v_i = nP \cdot \frac{\hat{\sigma}_i^2}{\sum_{i=1}^n \hat{\sigma}_i^2}$



## CELEBA-HQ RESULT



**ITERATIVELY-LEARNED POWER ALLOCATION** Initialize  $(v_1, ..., v_n) = (P, ..., P)$  and for iterations t = 1 to T:

- Generate a random **A** according to current  $(v_1, \ldots, v_n)$
- Calculate MSE of (x, x̂) of each signal entry averaged over B training data
- Entries with the top  $\alpha n$  MSE values:  $v_i = v_i e^{-\lambda_t}$ Entries with the bottom  $\alpha n$  MSE values:  $v_i = v_i e^{\lambda_t}$ Entries for the rest:  $v_i$  unchanged
- Rescale  $(v_1, \ldots, v_n)$  such that  $\sum_{i=1}^n v_i = nP$

Hyperparameters details:

- ▶ Update proportion  $\alpha \in (0, \frac{1}{2})$
- Update extent  $\lambda_t = \lambda_0 \cdot \eta^{t-1}$  with initial  $\lambda_0$  and decay  $\eta$
- Number of iterations T
- Batch size *B*

#### i.i.d gaussian

#### proportional

iterative  $\mathcal{N}(0, 16)/\ell = 900$ 



### SYNTHETIC DATA RESULT



#### EXPERIMENT

- $\triangleright$  P = 1 such that  $\mathbf{A} \sim \mathcal{N}(0, 1)$  as **baseline**
- $\sim \alpha = \frac{1}{3}; \lambda_0 = 0.1; \eta = 0.95; T = 20; B$  varies across the datasets
- Both variance distribution map and recovery performance figure are produced (shown left)

#### LINK

For further references for the paper and code, please go to https://github.com/ethangela/Data\_Driven\_Measurement\_ Matrix\_Design





