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Introduction

Social learning problem
Local observations: At each time instant i, each
agent k receives a private signal ξk,i generated
from an unknown probability distribution.
Local likelihood models: Each agent k has a
family of H likelihood models {Lk(·|θ)}
parameterized by a hypothesis belonging to a
finite set

Θ = {θ0, θ1, . . . , θH−1} .

Global learning task: Inferring the true state
θ∗ ∈ Θ that best explains their observations.
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Introduction

Social learning problem
ã Strongly-connected network
ã Left-stochastic combination policy

A = [a`k]:

A>1 = 1, a`k > 0, ∀` ∈ Nk

and a`k = 0 for ` /∈ Nk.
ã Perron eigenvector π:

Aπ = π, 1
>π = 1,

π` > 0, ∀` = 1, 2, . . . , N.
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Introduction

Adaptive social learning (ASL) algorithm [2]

δ is the step size parameter
µk,i(θ) is the belief of agent k on hypothesis θ at time instant i.
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Introduction

Learning performance of the ASL algorithm
In the slow adaptation regime (i.e., with small δ), the ASL algorithm enables each
agent in the network to

learn the true hypothesis with a small error probability in the steady state (the
steady-state error probability decays with 1

δ ).
track the changes of the true state faster than the non-adaptive social learning
algorithms (adaptation time ≈ O(1

δ )).

ã Can we improve the learning performance by optimizing the combination policy?
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Introduction

Definitions and notations

Variables Agent k Network

Log-likelihood ratio xk,i(θ) = log
Lk(ξk,i|θ0)
Lk(ξk,i|θ) xave,i(θ) =

∑N
`=1 π`x`,i(θ)

Logarithmic Moment
Generating Function Λk(t; θ) = logE

[
etxk,i(θ)

]
Λave(t; θ) =

∑N
`=1 Λ`(π`t; θ)

Instantaneous error probability pk,i = P
[

arg max
θ∈Θ

µk,i(θ) 6= θ0

]
pneti = 1

N

∑N
`=1 p`,i

Steady-state error probability pk = limi→∞ pk,i pnet = 1
N

∑N
`=1 p`
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Theoretical Results

1. Maximizing the error exponent

Lemma 1[2]: Under the assumption of Λave(t; θ) <∞,∀t, the steady-state error proba-
bility pk obeys a Large Deviation Principle (LDP) in the small-δ regime:

pk ' e−Φ/δ

where the notation ' denotes equality to the leading order in the exponent as δ goes to
zero. The error exponent Φ = minθ 6=θ0 Φ(θ) is determined by the rate function given by

φ(t; θ) =

∫ t

0

Λave(τ ; θ)

τ
dτ,

and Φ(θ) = −inf
t∈R

φ(t; θ) is the Legendre transform of φ(t; θ) at point 0.
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Theoretical Results

Question: What is the best Perron eigenvector π∗ that leads to the largest error
exponent?

Solve the optimization problem: max
π

Φ s.t. π > 0, 1
>π = 1

Optimal Perron eigenvector

Theorem 1: The maximum error exponent of the steady-state error probability is achieved
when the Perron eigenvector is uniform, i.e.,

1

N
1 ∈ arg max

π
Φ s.t. π > 0, 1>π = 1.

Doubly-stochastic policies are preferred for improving the learning accuracy!
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Theoretical Results

2. Minimizing the adaptation time

Definition 1[2]: The adaptation time, i.e., Tadap, is defined as the critical time instant i
after which the instantaneous error probability is decaying with an error exponent (1−ε)Φ
for some small ε > 0:

pk,i ≤ e−
1
δ

[(1−ε)Φ+O(δ)]

where the notation O(δ) signifies that the ratio O(δ)/δ stays bounded as δ → 0.
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Theoretical Results

Question: What is the best combination policy that leads to the smallest adaptation
time?

Approximate the adaptation time for the small signal-to-noise ratio (SNR) regime
[3]: Λave(t; θ) ≈ κ1(θ)t+ κ2(θ)

2 t2

Adaptation time for the small SNR regime

Theorem 2: Consider the uniform initial belief condition and the small SNR regime, then
the adaptation time Tadap can be approximated as

Tadap ≈
log
(
1−
√

1− ε
)

log(1− δ)

for any combination policy.
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Simulation Results

Simulation setup
Three hypotheses: Θ = {θ0, θ1, θ2}
Laplacian likelihood functions:
fn(ξ) = 1

2 exp {−|ξ − 0.1n|} , n ∈ {0, 1, 2}
Strongly-connected graph
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Simulation Results

Steady-state performance
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Simulation Results

Transient behavior
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Concluding Remarks

The effect of combination policies on two key performance metrics of adaptive social
learning:

1 Error exponent: The best error exponent can be achieved by doubly-stochastic
combination policies.

2 Adaptation time: The difference of the adaptation time among different
combination policies is negligible if the SNR between hypotheses is small.
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Thank you!
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