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Federated Learning
Introduction and Applications

Federated Learning is a technique for training ML models across multiple

decentralized edge devices or servers without exchanging local data samples

FL is a key enabler for Edge Machine Learning, a novel class of

cyber-physical systems that exploit the Synergy and Complementarity of

Machine Learning and Edge Computing

Applications: Augmented Reality, Autonomous Driving, Industry 4.0, etc.
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RIS-Aided Federated Learning at the Edge
Motivations and state of the art

Desiderata: Enabling energy-efficient federated learning at the wireless
network edge, with latency and learning performance guarantees, in the
context of beyond 5G network endowed with Reconfigurable Intelligent
Surfaces (RISs).

Federated Learning (FL):

▶ FL seminal papers [Kone15][Kone16]
▶ Communication-efficient FL [Kone16] [Ha19] [Wang19]
▶ Deep FL [Bren16]
▶ Static joint learning and wireless allocation in FL [Chen19] [Tran19]
▶ Dynamic user selection for FL [Chen20]
▶ FL & RISs [Ni20][Liu21]

Contribution: Novel dynamic optimization framework for adaptive federated
learning in the context of beyond 5G network endowed with RISs, jointly
encompassing radio and computation aspects in order to strike the best
trade-off between energy, latency, and performance of the FL task.



System Model
Scenario



System Model
Federated Learning Task

N edge devices and an AP equipped with an edge server

Consider the learning problem in the unknown model variable w

min
w

N∑
i=1

E
{
Ji(w;xi, yi)

}
At each t, the edge devices compute ∇Ji(w;xi,t, yi,t) over a batch of data
Bt of size |Bt| = Bt and upload them to the AP

The edge server computes wt+1 via any gradient-based algorithm and fed it
back to the devices. In general:

wt+1 = wt − µ · f
(∑

i∈St

∇Ji(w;xi,t, yi,t)
)



System Model
RIS-Enhanced Communications

K passive RISs with M reflecting elements

The phase of each element is quantized using br bits

Each element has a complex reflection coefficient:

vk,l,t ∈ R =

[
0,
{
ej

2nπ

2br

}2br−1

n=0

]
, ∀k, l, t

The RIS-aided uplink transmission rate between user i and the AP:

Ri,t = Bi log2

(
1 +

hi,t(vt)pi,t
N0Bi

)
,

where hi,t(vt) is the RIS-dependent channel coefficient:

hi,t(vt) =

∣∣∣∣ha
i,t +

∑K

k=1
hT
i,k,t diag(vk,t) z

a
i,k,t

∣∣∣∣2



System Model
Latency of Training Iterations

Local processing time: Lloc
i,t =

BtJi
fi,t

, where f l
i is the local CPU frequency

Uplink communication time: Lu
i,t =

m · bi,t
Ri,t

, where Ri,t is the uplink data

rate.

Remote processing time: Ls
t =

C|St|
fs
t

, where fs is the remote frequency of

the server.

The overall latency at time t is given by:

Lt = max
i∈St

{
Lloc
i,t + Lu

i,t

}
+ Ls

t



System Model
Power Consumption

Power spent for local computation: pci,t = γl(fi,t)
3

Power spent for uplink transmission: pi,t =
BiN0

hi,t

[
exp

(
Ri,t ln 2

Bu
i

)
− 1

]

Power spent for remote computation: pcs,t = γr(f
s
t )

3

The overall power consumption at time t is given by:

ptott =
∑N

i=1

(
pi,t + pci,t

)
+ pcs,t



Dynamic Resource Allocation for Federated Learning
Problem Formulation

min
Ψt

lim
t→∞

1

t

∑t−1

τ=0
E
{
ptotτ

}
subject to (a) lim

t→∞

1

t

t−1∑
τ=0

E {Lτ} ≤ L;→ Avg. Latency Constraint

(b) lim
t→∞

1

t

t−1∑
τ=0

E{Gτ} ≥ G;→ Avg. Learning Performance Constraint

(c) lim
t→∞

1

t

t−1∑
τ=0

E{ατ} = α;→ Avg. Convergence Rate Constraint

bi,t ∈ Ci, ∀i ∈ St, t; Rmin
i ≤ Ri,t ≤ Rmax

i,t , ∀i ∈ St, t;

fmin
i ≤ fi,t ≤ fmax

i , ∀i ∈ St, t; vk,l,t ∈ R, ∀k, l, t;
Bt ∈ B, ∀t; fs,min ≤ fs

t ≤ fs,max, ∀t;

Xt

where Ψt = [vt, {bi,t}i∈St , {Ri,t}i∈St , {fi,t}i∈St , f
s
t , Bt].



Dynamic Resource Allocation for Federated Learning
Online Estimation of Learning Metrics

Generally no closed-form expression for for Gt and αt, especially in
Deep-Learning (non-convex) settings

Online estimation in a totally data-driven fashion

We assume that either the ES is provided with a validation set T or the
agents can sense an additional batch T of data, compute their local learning
perfomance and send it (one scalar) to the server

Ĝt and α̂t to estimate online Gt and αt, e.g. for classification:

Ĝt =
1

|T |
∑

y∈T
I(ŷt = y), α̂t =

1

κ

κ−1∑
τ=t−κ

(Ĝτ − Ĝτ−1)



Dynamic Resource Allocation for Federated Learning
Lyapunov Optimization

Virtual Queues:

▶ Zt for the Latency inequality constraint:

Zt+1 = max
{
0, Zt + ϵz

(
Lt − L

)}
▶ Qt for the accuracy inequality constraint

Qt+1 = max
{
0, Qt + ϵq

(
G− Ĝt

)}
▶ Yt for the convergence rate equality constraint:

Yt+1 = [Yt + ϵy,t (α̂t − α)] · I
(
Ĝt ≤ G

)
Drift-plus-penalty function:

∆p
t = E

{1
2
(Z2

t+1 +Q2
t+1 + Y 2

t+1)−
1

2
(Z2

t +Q2
t + Y 2

t ) + V · ptott

∣∣ Φt

}
,

where Φt = [Zt, Qt, Yt].



Dynamic Resource Allocation for Federated Learning
Algorithmic Solution

Step 1: ∀t, observe Φt and minimize a DPP upper bound instantaneous
values:

min
Ψt∈Xt

ZtL̃t −QtG̃t − Ytα̃t + V · ptott

Mixed-integer non linear optimization problem, closed-form solutions for any
given St, {bi,t}i∈St

and vt, → Find St, {bi,t}i∈St
and vt with the proposed

two-stage greedy selection, setting:

Ri,t =

 2Bi

ln(2)
W

 ln(2)

Bi

√
Zt m · bi,t hi,t(vt)

2V N0

Rmax
i,t

Rmin
i

fi,t =

[(
ZtBtJi
3γiV

) 1
4

]fmax
i

fmin
i

fr
t =

[(
ZtC |St|
3γsV

) 1
4

]fr,max

fr,min

Step 2: Update Zt, Qt, Yt.



Dynamic Resource Allocation for Federated Learning
Greedy Selection of {vk,t}Kk=1 and St

Stage 1 → Selection of RISs coefficients {vk,t}Kk=1:

▶ The method greedily selects {vk,t}Kk=1 to maximize:

∆R({vk,t}Kk=1) =

N∑
i=1

δi,t

∣∣∣∣∣ha
i,t +

K∑
k=1

hT
i,k,t diag(vk,t) z

a
i,k,t

∣∣∣∣∣
2

where δi,t =
1/|ha

i,t|2∑N
i=1 1/|ha

i,t|2

▶ Polynomial complexity in K, M and |R|

Stage 2 → Selection of transmitting set St:

▶ For each Bt ∈ B , the method starts from St = ∅ and iteratively selects
the most convenient {bi,t}Ni=1 and the corresponding edge resources

▶ The method keeps adding devices until the objective decreases

▶ Polynomial complexity in N , max
i

{|Ci|}, |B|



Numerical Results
Simulation Set Up

N = 9 devices and one AP equipped with an edge server

Classification task on the MNIST dataset (10 classes)

CNN with 4 convolutional layers (∼100K parameters)

ADAM Optimizer, learning rate 0.001, forgetting factors β1 = 0.9, and
β2 = 0.99

One RIS equipped with 1-bit discrete phase shifters

The channels are generated using the ABG model, using a carrier frequency
equal to 6 GHz, with a unit variance Rayleigh fading



Numerical Results
Learning and Trade Off Curves

The method guarantees the
prescribed performance in terms of
α and G, within L

The method reacts promptly to
changes in the accuracy requirement

Baseline given by an equal-rate
policy with all the agents always
transmitting

The tradeoff gets worse imposing a
stricter G requirement

Significant gain obtained thanks to
the presence of the RIS
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Conclusions

We proposed an online strategy for adaptive federated learning empowered
by reconfigurable intelligent surfaces (RISs)

The strategy dynamically minimizes the power expenditure of the system,
while guaranteeing target learning performance and latency constraints in a
fully data driven fashion

The strategy allows the exploration of a new trade-off of communication
networks, including power expenditure, delay, and learning performance

Numerical results on federated training of Deep Neural Networks illustrate
the advantages obtained by the proposed strategy and by the usage of RISs


