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1. The bird flew around the cage.

2. The nest was just big enough for the bird.

3. The only bird she can see is the parrot.

4. The bird poked its head out of the hatch.

5. The bird holds the worm in its beak.

6. The bird preened itself for mating.
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New subject: Record new data



Intra-subject

Leave-one-out




Intra-subject

Leave-one-out




Intra-subject

Leave-one-out




Intra-subject

Leave-one-out

Train Test




Intra-subject

Leave-one-out

Train Test

AN

Harder: Subject variability

More data available
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Shortcomings of Pairwise Classification

Textual representation

e.g. GIoVE Non-semantic
1) information not in
fMRI!2!
2)  Random baseline: 50% Hard to assess progress

[2] J. Gauthier and A. Ivanova. Does the brain represent words? an evaluation of brain decoding studies of language understanding. arXiv preprint arXiv:1806.00591, 2018
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