

Improving Brain Decoding Methods and Evaluation

Damián Pascual, Béni Egressy, Nicolas Affolter, Yiming Cai, Oliver Richter, Roger Wattenhofer

Distributed Computing Laboratory

What is Brain Decoding?

What is Brain Decoding?

fMRI

Word

"ability"

What is Brain Decoding?

Sentence

New subject: Record new data

Harder: Subject variability

More data available

Fine-tuning

Fine-tuning Pre-train

Fine-tuning

2) Random baseline: 50%

[2] J. Gauthier and A. Ivanova. Does the brain represent words? an evaluation of brain decoding studies of language understanding. arXiv preprint arXiv:1806.00591, 2018

[2] J. Gauthier and A. Ivanova. Does the brain represent words? an evaluation of brain decoding studies of language understanding. arXiv preprint arXiv:1806.00591, 2018

Model

Model

Universal Decoder^[1] (Ridge regression)

PCA + XGBoost

 $VQ-VAE^{[4]}$

MLP-Mixer^[5]

Ours

F. Pereira et al. Toward a universal decoder of linguistic meaning from brain activation. Nature communications, 9(1):1–13, 2018.
A. Van Den Oord, et al. Neural discrete representation learning. In Advances in Neural Information Processing Systems, 2017

[5] I. Tolstikhin, et al. Mlp-mixer: An all-mlp architecture for vision. In Advances in Neural Information Processing Systems, 2021

Universal Decoder^[1] (Ridge regression)

PCA + XGBoost

 $VQ-VAE^{[4]}$

MLP-Mixer^[5]

Ours

[1] F. Pereira et al. Toward a universal decoder of linguistic meaning from brain activation. Nature communications, 9(1):1–13, 2018.

[4] A. Van Den Oord, et al. Neural discrete representation learning. In Advances in Neural Information Processing Systems, 2017

[5] I. Tolstikhin, et al. Mlp-mixer: An all-mlp architecture for vision. In Advances in Neural Information Processing Systems, 2021

Universal Decoder^[1] (Ridge regression)

PCA + XGBoost

VQ-VAE^[4]

MLP-Mixer^[5]

Ours

[1] F. Pereira et al. Toward a universal decoder of linguistic meaning from brain activation. Nature communications, 9(1):1–13, 2018.

[4] A. Van Den Oord, et al. Neural discrete representation learning. In *Advances in Neural Information Processing Systems*, 2017 [5] I. Tolstikhin, et al. Mlp-mixer: An all-mlp architecture for vision. In *Advances in Neural Information Processing Systems*, 2021

Universal Decoder^[1] (Ridge regression)

PCA + XGBoost

 $VQ-VAE^{[4]}$

MLP-Mixer^[5]

Ours

F. Pereira et al. Toward a universal decoder of linguistic meaning from brain activation. Nature communications, 9(1):1–13, 2018.
A. Van Den Oord, et al. Neural discrete representation learning. In *Advances in Neural Information Processing Systems*, 2017

[5] I. Tolstikhin, et al. Mlp-mixer: An all-mlp architecture for vision. In Advances in Neural Information Processing Systems, 2021

Pairwise accuracy

Pairwise accuracy

Pairwise accuracy

Conclusion

Model

Model

Results

Leave-one-out 2.6% Top 1 **9.8 % Top 5**