ICASSP 2022 – Path signatures for non-intrusive load monitoring

Paul Moore¹ joint with Theodor-Mihai Iliant¹, Filip-Alexandru Ion¹, Yue Wu², Terry Lyons¹

¹Mathematical Institute, Oxford University ²Department of Mathematics and Statistics, Strathclyde University, UK

> ICASSP 2022, Singapore

Introduction

Electricity load monitoring

Monitoring voltage and current at the supply to a house

Using this signal to identify appliances

The Path Signature

A way of generating features from time-ordered data

Experiments

Predicting the appliance from the supply wire signal

Electricity load monitoring

Energy usage from different countries

- Load monitoring is needed to monitor appliance usage.
- Individual appliance monitoring is impractical.
- Non-intrusive monitoring is where we monitor at the supply.

image source: Batra et al. 2015, with permission

Supply wire data (input)

- The plot shows the voltage (red) and current (blue) from one house.
- The voltage is roughly sinusoidal while the current is more irregular.
- The data forms the input for appliance classification.

Current-Voltage (I-V) Graphs

image source: Ting et al. 2005, with permission

Shape features

 Two shape features from the I-V trajectory; left: angle of the maximum-minimum line; right: distance from the centroid to the maximum point.

In the experiments we use the set of 12 shape features from Mulinari et al.

The Path Signature

- The path signature transforms the V-I trajectory into a sequence of numbers which can be used as features in machine learning.
- The sequence length is determined by the signature degree. See Chevyrev and Kormilitzin.
- Python packages esig and iisignature are available to compute the path signature, import esig.tosig as ts degree = 2 path_signature = ts.stream2sig(path, degree)

Experiments

No.	Appliance type	No. of appliances	No. of samples
1	Drill	6	120
2	Fan	2	40
3	Grinder	2	40
4	Hair dryer	4	80
5	Hedge trimmer	3	60
6	Lamp	4	80
7	Paint stripper	1	20
8	Planer	1	20
9	Router	1	20
10	Sander	3	60
11	Saw	8	160
12	Vacuum cleaner	7	140
	Total	42	840

Number and type of appliances in the COOLL dataset

- We predict the appliance using 1) shape features, and 2) path signatures.
- Data used in the experiments is from the Controlled On/Off Loads Library (COOLL).
- All models are trained by 5-fold cross-validation on 80% of the 840 samples, and use the remaining 20% as a test set.

Predictor importance

Left - the relative importance of each shape feature.

Right - the relative importance of each term in the signature.

Predicting appliance labels - results

Predicting appliance labels

Set	Features	Number	Accuracy(SD)	Test set
Full	Shape	12	97.77 (0.74)	97.62
	Signature	28	98.81 (1.13)	98.81
Selected	Shape	5	98.51 (1.17)	99.40
	Signature	7	99.11 (0.82)	98.81

Accuracy shown as percentage correct with standard deviation in brackets.

- Accuracy of appliance classification comparing shape features with path signature features.
- Full and selected features sets are shown. The penultimate column is for cross-validation on the training set, and the last column shows a test set accuracy.
- The path signature performs as accurately as shape features.

Conclusion

- The path signature uniquely characterizes a V-I trajectory with a sequence of real numbers which can be used as a feature vector for machine learning.
- The shape features were engineered over a period of more than a decade, but we found path signatures gave similar results with a few days' work.
- The path signature can be used for many applications with multivariate, time-ordered data.

Bibliography

Batra et a

"NILMTK: An open source toolkit for non-intrusive load monitoring." Proceedings of the 5th international conference on Future energy systems. 2014.

Ting et al.

"A taxonomy of load signatures for single-phase electric appliances." IEEE PESC (Power Electronics Specialist Conference). 2005.

Chevyrev and Kormilitzin

"A primer on the signature method in machine learning." arXiv preprint arXiv:1603.03788 (2016).

Mulinari et al.

"A new set of steady-state and transient features for power signature analysis based on VI trajectory."

IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America). IEEE, 2019.

Thanks to Bruna Mulinari for help in reproducing the results in Mulinari et al.