Modeling Of Pre-trained Neural Network Embeddings Learned From Raw Waveform For COVID-19 Infection Detection EPFL Zohreh Mostaani^{1,2} RaviShankar Prasad¹ Bogdan Vlasenko¹ Mathew Magimai-Doss¹

Introduction

- COVID-19 is a respiratory disease.
- Cough sounds and speech based diagnosis of COVID-19 has gained interest.
- Interspeech 2021 ComParE and DiCOVA challenges have propelled the research in this direction.
- DiCOVA II:
- Breathing (4.6 hrs), Cough (1.7 hours), and Speech (3.9 hours).
- Total: 965, COVID-19 positive: 172, COVID-19 negative: 793.

Proposed Method

Acoustic features representations

- ComParE LLDs:
- Functionals: 6373 dimensional vector (CMP_F)
- BoaW: two sets of codebooks with size 50 for LLDs and $\Delta LLDs (CMP_L)$
- Phoneme Recognition: 1024 dimensional embedding
- Mean, std: $f_{\mu\sigma}(PHR)$
- BoaW: one codebook with size 100 BoAW(PHR)
- Breathing pattern estimation: 10 dimensional embedding
- Mean, std: $f_{\mu\sigma}(BPE)$
- BoaW: one codebook with size 100 BoAW(BPE)

Classification

- Ensemble classifiers, grid search and AUC as optimization criterion:
- Random Forest (RF)
- Ada Boost (AB)
- Gradient Boost (GB)
- Fusion:
- Early fusion (EF): Feature level combination
- Late fusion (LF): Aggregating (unweighted) posteriors of several classifiers

¹Idiap Research Institute, Switzerland ²École polytechnique fédérale de Lausanne, Switzerland

Results

Track 1:	breathing; Track 2: cough;
Track 3:	speech; Track 4: Fusion

- The results are expressed in AUC metric and the sensitivity is given for specificity 95% on the Test set
- PHR neural embeddings can yield better systems than hand-crafted LLD-based systems and BPE embedding-based systems
- BPE embedding-based system yields slightly lower performance than LLD-based system but considerably better sensitivity.
- PHR neural embeddings consistently yield better system than BPE neural embeddings (Also look at the ROC plot). One of the reason could be that the effects of COVID-19 for participants could be more discriminatory at articulatory level in comparison to BPE embedding level.

		_			
System		Dev	Test	Sensitivity	
Feature	Classifier	(%)	(%)	(%)	
	Track 1				
CMP_F	RF	77.83	76.78	30.0	
$BoAW(CMP_L)$	RF	73.58	74.52	31.67	
CMP_F , $BoAW(CMP_L)$	$LF^{[I]}$	77.56	78.05	43.33	
BASELINE	BLSTM	77.25	84.50	31.67	
Track 2					
BoAW(PHR)	RF	70.06	74.19	30.0	
$f_{\mu\sigma}(\text{PHR})$	RF	70.54	72.87	26.67	
CMP_L	RF	66.09	66.68	16.67	
$f_{\mu\sigma}(\text{PHR}), BoAW(\text{PHR})$	$LF^{[II]}$	71.32	74.63	31.67	
BASELINE	BLSTM	75.21	74.89	36.67	
	Track 3				
BoAW(PHR)	$RF^{[III]}$	77.37	80.08	41.67	
$f_{\mu\sigma}(\text{PHR})$	RF	76.33	79.3	26.67	
BoAW(BPE)	RF	68.93	73.49	21.67	
$f_{\mu\sigma}(\text{BPE})$	RF	68.44			
$BoAW(CMP_L)$	RF	70.38	75.59	15.0	
$\text{EF}(f_{\mu\sigma}(\text{PHR}), f_{\mu\sigma}(\text{BPE}))$	$RF^{[IV]}$	76.67	79.1	28.33	
$EF(BoAW(PHR), BoAW(BPE), BoAW(CMP_L))$	RF	77.47	79.95	33.33	
$f_{\mu\sigma}(\text{PHR}), BoAW(\text{PHR})$	LF	77.59	80.64	36.67	
BASELINE	BLSTM	80.16	84.26	43.33	
Track 4					
III, IV	LF	77.79	80.51	40.0	
I, IV	LF	80.09	78.05	43.33	
I, II	LF	77.93	78.05	43.33	
BASELINE	LF	81.67	84.70	55.0	

The most discriminating LLDs and functionals

	LLDs	functional	
	Track 1		
	Δ audSpec_Rfilt	3^{rd} quartile	
• All Tracks: The auditory spectra	voicing parameters	LP–gain	
coefficients obtained using RASTA	magnitude spectra	RollOff	
filtoring and their deltag	Δ magnitude spectra	variance	
muering and men dentas.	Track 2		
• Track 1: coefficients obtained as the third	audSpec_Rfilt	regression coefficients,	
quartile of these features.		centroid, 2^{nd} quartile	
Trade 9. an artanded list of functionals	Δ Pitch contour	regression coefficients	
• Track 2. an extended list of functionals	Δ RMSenergy	extremums	
prove significant with features capturing	band energy magnitude spectra	extremums	
primarily the spectral shape.	magnitude spectral slope	regression coefficients	
Track 3. graceh gracific fosturog gueb ag	Track 3		
• Track J. speech specific features such as	audSpec_Rfilt	regression coefficients, 1^{st} quartile	
MFCC and spectral band energy.	mfcc	peak behavior, percentiles	
	Δ audSpec_Rfilt	peak behavior	
	Δ magnitude spectra	moments	

The	F
frequ	16
the]	B
frequ	le

The cumulative frequency response of the kernels for the first convolution layer of the CNN models: PHR and BPE.

J.

Conclusion Our studies demonstrate that modeling neural embeddings from neural networks trained on auxiliary or other speech tasks for COVID-19 infection detection is a promising direction and can replace hand-crafted features.

This work was partially funded by the Swiss National Science Foundation through the project Towards Integrated processing of Physiological and Speech signals (TIPS), grant no. $200021_188754.$

Cumulative frequency response + ROC

PHR network emphasizes around the formant ency regions in speech, while the emphasis of 3PE network is significantly towards the lower lency region.

ROC plot for systems trained using PHR embeddings and BPE embeddings on the Dev set of Track

Acknowledgements