Abstract

Capitalization normalization (truecasing) is the task of restoring the correct case (uppercase or lowercase) of noisy text. We propose a fast, accurate and compact two-level hierarchical word-and-character-based recurrent neural network model. We use the truecaser to normalize user-generated text in a Federated Learning framework for language modeling. A case-aware language model trained on this normalized text achieves the same perplexity as a model trained on text with gold capitalization. In a real user A/B experiment, we demonstrate that the improvement translates to reduced prediction error rates in a virtual keyboard application. Similarly, in an ASR language model fusion experiment, we show reduction in uppercase character error rate and word error rate.

CAPITALIZATION NORMALIZATION FOR LANGUAGE MODELING WITH AN ACCURATE AND EFFICIENT HIERARCHICAL RNN MODEL Hao Zhang, You-Chi Cheng, Shankar Kumar, W. Ronny Huang, Mingqing Chen, Rajiv Mathews

haozhang@google.com

System	Precision	Recall	F1	Speed
5 grow FST unpruned, unoptimized	91.64	43.55	59.04	1.0x
pruned, optimized	91.88	41.19	56.88	88.0x
small, 1-layer uni-, dec.	69.11	22.86	34.35	0.7x
ober DNN small, 1-layer bi-, enc.&dec.	86.12	75.07	80.22	0.5x
large, 2-layer bi-, enc.&dec.	87.06	78.09	82.33	0.1x
hier. RNN, student small, 1-layer bi-, enc.&dec. $\times 2$	86.95	79.81	83.23	2.2x
hier. RNN, teacher large, 2-layer bi-, enc.&dec. $\times 2$	88.01	82.60	85.22	0.3x

- FST models have high precision but low recall. Character-based RNN models are slow.
- Hierarchical RNN models have the best accuracy and speed trade-offs.

Case-aware Language Models

Capitalization Model	Perplexity
50% corrupt	59.41
25% corrupt	54.68
5-gram FST	51.74
hier. RNN	51.60
oracle	51.61

• Perplexities of RNN language models on LM1B using dif ferent capitalization normalization methods.

Case-aware Language Models in Speech Recognition

Model	WER	UER
5-gram FST	5.8	32.6
hier. RNN	5.6	32.4

• ASR LM fusion experiment results. The two systems in comparison differ only in the capitalization normalization model used to pre-process the LM training data. UER stands for upper-case error rate.

Google Research

Accuracy, Speed, and Model Size Comparison

	Case-aware Lang	uage Models in Applications	Virtual
	Model	WMR	F
	5-gram FST	5.81%	2.
	hier. RNN	5.78%	2.
	Rel. Reduction	[-0.92, -0.11]%	[-2.21,
f–	• Virtual keyboard A/B emodified or retyped. $R_{\rm r}$ row shows the 95% conf	experiment results. V AC is the auto-correction interval of the	<i>VMR</i> is the etion rejection relative re
		Conclusions	
	Truecasing provides a factor eling for applications such a propose a hierarchical word	red solution to impro- as ASR and text inp- -and-character-based	ve case-aw ut in virt [.] RNN mc

ware language modtual keyboards. We odel with the speed advantage of word-based models and accuracy advantage of character-based models. The model is efficient enough to be uploaded to mobile devices to train a language model using Federated Learning. The improvement is manifested in reduction of prediction error rates in a large-scale A/B experiment using a virtual keyboard and an ASR LM fusion experiment.

1.3M19.2M

RAC.91% .87%

-0.69]%

he fraction of words ection rate. The last ceductions.