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ABSTRACT

Capitalization normalization (truecasing) is the task of restor-
ing the correct case (uppercase or lowercase) of noisy text.
We propose a fast, accurate and compact two-level hierarchi-
cal word-and-character-based recurrent neural network model.
We use the truecaser to normalize user-generated text in a
Federated Learning framework for language modeling. A case-
aware language model trained on this normalized text achieves
the same perplexity as a model trained on text with gold capi-
talization. In a real user A/B experiment, we demonstrate that
the improvement translates to reduced prediction error rates in
a virtual keyboard application. Similarly, in an ASR language
model fusion experiment, we show reduction in uppercase
character error rate and word error rate.

Index Terms— Text normalization, capitalization, true-
casing, language modeling.

1. INTRODUCTION

The vast amount of online text powers language models for
speech recognition, typing suggestions and many other lan-
guage generation tasks. However user-generated texts, espe-
cially those from mobile applications such as Twitter Tweets
[1], often violate the grammatical rules of casing in English
and other western languages [2]. The process of restoring
the proper case, often known as tRuEcasIng [3], provides a
factorized solution with a dedicated model for case normal-
ization. Such a model can be applied on noisy text before
case-aware language model training or on model output after
case-agnostic language model inference. Concretely, it has
been used for restoring case and improving the recognition
performance for ASR (post-processing, [4, 5, 6]) as well as
case normalization of user text prior to language model (LM)
training (pre-processing, [7]). [7] employs Federated Learning
[8], a privacy-preserving learning paradigm, on distributed
devices. The need for normalizing text on a variety of mobile
devices makes it an imperative to develop a fast, accurate and
compact truecaser.

From a modeling perspective, prior work can be grouped
into word-based and character-based approaches. Most of the
earlier works are word-based [3, 9]. In the word-based view,

the task is to classify each word in the input into one of the few
classes [3]: all lowercase (LC), first letter uppercase (UC), all
letters uppercase (CA), and mixed case (MC). The main draw-
back of the word-based approach is that it does not generalize
well to unseen words and mixed case words. The development
of character-based neural network modeling techniques [10]
led to the introduction of character-based truecasers [11, 12].
In the character-based view, the task is to classify each char-
acter in the input into one of the two classes: U and L, for
uppercase and lowercase respectively. The shortcoming of
character-based models is inefficiency. As word-level features
in some form are important for classification, character-based
models need to be deep enough to capture word-level features,
which exacerbates their slowness.

We view truecasing as a special case of text normaliza-
tion [13] with similar trade-offs for accuracy and efficiency.
Thus, we classify input words into one of two classes: SELF
and OTHER. Words labeled SELF will be copied as-is to the
output. Words labeled OTHER will be fed to a sub-level
character-based neural network along with the surrounding
context, which is encoded bidirectionally. The task of the
sub-network is to perform a non-trivial transduction such as:
iphone→ iPhone, mcdonald’s→ McDonald’s and
hewlett-packard→ Hewlett-Packard.

The two-level hierarchical network is fast while also being
accurate. We report the model’s intrinsic accuracy, speed, and
size on a curated Wikipedia data set in Section 4.1. Next,
we focus on case-aware language modeling on noisy text. In
Section 4.2, we show that applying the model in preprocessing
can reduce a cased language model’s perplexity. Furthermore,
in Section 4.3, we show that when the cased language model
trained in this fashion is applied in a noisy channel virtual
keyboard, it leads to reduction in word prediction errors in an
A/B test on real users. Finally, in section 4.4, we show similar
improvement in ASR language model fusion.

2. RELATED WORK

Word-based truecasing has been the dominant approach since
the introduction of the task by [3]. Word-based models can be
further categorized into generative models such as HMMs [3,
4, 5, 1] and discriminative models such as Maximum-Entropy
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Markov Models [9], Conditional Random Fields [14], and
most recently Transformer neural network models [15, 16, 6].
Word-based models need to refine the class of mixed case
words because there is a combinatorial number of possibilities
of case mixing for a word (e.g., LaTeX). [3, 9] suggested
using either all of the forms or the most frequent form of
mixed case words in the training data. The large-scale finite
state transducer (FST) models in [5] used all known forms
of mixed case words to build the “capitalization” FST. [14]
used a heuristic GEN function to enumerate a superset of
all forms seen in the training data. But others [15, 16] have
chosen to simplify the problem by mapping mixed case words
to first letter uppercase words. [6] only evaluated word class
F1, without refining the class of MC.

Character-based models have been explored largely after
the dawn of modern neural network models. [11] first intro-
duced character-based LSTM for this task and completely
solved the mixed case word problem. Recently, [2] compared
character-based n-gram (n up to 15) language models with
the character LSTM of [11]. [12] advanced the state of the art
with a character-based CNN-LSTM-CRF model.

Text normalization is the process of transforming text into
a canonical form. Examples of text normalization include
but are not limited to written-to-spoken text normalization for
speech synthesis [13], spoken-to-written text normalization for
speech recognition [17], social media text normalization [18],
and historical text normalization [19]. Truecasing is a problem
that appears in both spoken-to-written and social media text
normalization.

3. FORMULATION AND MODEL ARCHITECTURE

The input is a sequence of all lowercase words ~X = (x1, . . . , xl).
The output is a sequence of words with proper casing
~Y = (y1, . . . , yl). We introduce a latent sequence of class
labels ~C = (c1, . . . , cl), where ci ∈ {S=SELF,O=OTHER}.
We use the notation xji and yji to represent the j-th character
within the i-th word.

The model is trained to predict the probability:

P(~Y|~X) =
∑
~C

P(~Y|~X, ~C) · P(~C|~X), (1)

where P(~C|~X) is a word-level model that predicts if a word
should stay all lowercase (SELF) or change to a different case
form (OTHER) taking into account label dependencies between
c1, . . . , ci−1 and ci.

P(~C|~X) =
l∏

i=1

P(ci|c1, . . . , ci−1, ~X) (2)

The label sequence ~C works as a gating mechanism,

P(~Y|~X, ~C) =
l∏

i=1

δ(ci,O)P(yi|X) + δ(ci,S)δ(xi, yi), (3)

where P(yi|X) is a character-level model that predicts each
output character within a word, assuming dependency between
characters within a word: y1i , . . . , y

j−1
i and yji , but no cross-

word dependency between y1, . . . , yi−1 and yi, and S and O
denote SELF and OTHER respectively.

P(yi|X) =

j=|xi|∏
j=1

P(yji |y
1
i , . . . , y

j−1
i , ~X) (4)

Given that δ(ci,S) ≡ δ(xi, yi), we can derive the log likeli-
hood of Equation 1 as:

log(P(~Y|~X)) =

l∑
i=1

δ(ci,O) log(P(yi|X))

+ log(P(~C|~X)) (5)

Equations 2 and 4 can be modeled as sequence-to-sequence
(seq2seq) problems. Unlike the general machine translation
problem with unequal number of input and output tokens
which requires a soft attention mechanism [20], both of our
seq2seq problems can assume hard alignment between the
output label at each time step and the input symbol at the same
time step (ci is aligned to xi, y

j
i is aligned to xji ).

john lives at 123 king ave next ...

a v e

A/a V/v E/e

SELF SELF SELF SELF SELF OTHER SELF

Fig. 1. Hierarchical RNN architecture.

We follow the multi-task recurrent neural network archi-
tecture of [13]. Figure 1 displays the rolled-out network of the
two-level hierarchical RNN on a typical input sentence. The
key difference with [13] is that in our setting, the models at
both levels perform sequence tagging whereas their second-
level model is a full-fledged sequence-to-sequence model with
soft attention [20].

The exact inference requires searching over all possible
~C and ~Y which is infeasible for RNNs. But we can do beam
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search for both Equation 2 and Equation 4 and use either the
entire beam of hypotheses of ~C or simply the best one in
Equation 3. In our experiments, using the entire beam only
helped slightly.

4. EXPERIMENTS

Our models as depicted in Figure 1 have a pair of forward
and backward RNNs over words to encode sentence context.
Words are first encoded based on subword features, namely
character n-grams with n up to 3 [13]. In the example shown
in Figure 1, the character n-grams representing the word ave
include a, v, e, <s>a, av, ve, e<s>, <s>av, ave, and
ve<s>, where <s> is the placeholder symbol for the left and
right boundaries. Each word is represented as the summation
of the embeddings of the hashed character n-grams.

We train a large teacher model and then apply sequence
distillation [21] to produce a compact student model. The
hyper-parameters of both models are listed in Table 1. We use
the same hyper-parameters for the word- and character-level
sub-models.

teacher student
(large) (small)

input embedding size 512 128
output embedding size 512 128
# of forward enc. layers 2 1
# of backward enc. layers 2 1
# of dec. layers 2 1
# of enc. GRU cells 512 128
# of dec. GRU cells 512 128
max char n-gram order 3 3
buckets of char n-grams 5000 5000
beam size 2 2

Table 1. Network hyper-parameters.

4.1. Accuracy, Speed, and Model Size Comparison

In this section, we report performance of models trained on a
large data set of digitized books and newswire articles contain-
ing 1.5 billion sentences. We use 90% of the data for training
and sample a subset from the remaining 10% for validation.
We use a human-curated data set of 1200 sentences1 from
Wikipedia edit history [22] for testing.

All models take lowercase tokenized sentences as input and
output the same tokens with predicted casing. The predicted
tokens are compared against references. Following [11], we
use non-lowercase (NL) F1 as the evaluation metric.

NL Precision =
# of correct NL predictions

# of NL predictions

NL Recall =
# of correct NL predictions

# of NL references
1https://github.com/google-research-datasets/wikipedia-intrinsic-

capitalization

NL F1 is the harmonic mean of NL Precision and Recall. For
brevity, we use precision, recall and F1 without qualification.

We present three groups of results in Table 2. The FST
group represents word-based HMM models with a wide cov-
erage of mixed case words. The character-based RNN group
is our implementation of [11] with various hyper-parameters.
The third group is our hierarchical RNNs.

We report CPU speed relative to the large FST model. We
use batch size of 1 at inference time for all models. All models
are implemented in TensorFlow and quantized after training.
We compare the model sizes in terms of the total number of
parameters.

FST models have high precision but low recall, showing
the coverage problem of word-based models. The one-layer
uni-directional character-based RNN scores low in both pre-
cision and recall. Even a single-layer bidirectional character-
based RNN is already 4 times slower than a single-layer word-
and character-based hierarchical RNN. Using two layers in
both the encoder and the decoder, a purely character-based
model is nearly 20 times slower than a hierarchical model with
about the same F1 score.

4.2. Case-aware Language Models

In this section, we study the effect of capitalization for case-
aware language models. We use the 1B Word Benchmark data
set (LM1B) introduced by [23]. The training and evaluation
sections consist of 0.8B words (30.4M sentences) and 153K
words (6075 sentences) respectively. The vocabulary consists
of 800K words. To simulate the scenario when the training
data has noisy capitalization, we noisify the training data by
randomly lowercasing either 25% or 50% of the capitalized
words. The baseline system does not perform any capitaliza-
tion normalization. Two systems to contrast with the baseline
apply the FST capitalizer and the RNN capitalizer respectively.
Without loss of generality, we use a moderately large (2-layer)
sub-word (16k word pieces, 2048 hidden units) LSTM LM as
the language model architecture [24].

Table 3 shows the word-level perplexities of the baseline
(noisy capitalization), the two capitalization normalizers (pre-
dicted capitalization), and the oracle (ground-truth capitaliza-
tion). We observe that the RNN capitalizer yields a similar
perplexity as the oracle while outperforming the FST capital-
izer by a small margin.

4.3. Case-aware Language Models in Virtual Keyboard
Applications

Virtual keyboards are indispensable for text input on the pop-
ular touchscreen devices. As spatial input signals of tap and
glide trails are often noisy, decoding the intended input can be
achieved with a noisy channel model composed of a spatial
model and a language model [25]. The quality of language
models directly impacts the prediction accuracy of virtual key-
boards which is reflected in features such as auto-corrections,
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System Precision Recall F1 Speed # of params

5-gram FST unpruned, unoptimized 91.64 43.55 59.04 1.0x 10M
pruned, optimized 91.88 41.19 56.88 88.0x 1M

char. RNN

small, 1-layer uni-, dec. 69.11 22.86 34.35 0.7x 230K
small, 1-layer bi-, enc.&dec. 86.12 75.07 80.22 0.5x 400K
large, 2-layer bi-, enc.&dec. 87.06 78.09 82.33 0.1x 8.4M

hier. RNN, student small, 1-layer bi-, enc.&dec. ×2 86.95 79.81 83.23 2.2x 1.3M
hier. RNN, teacher large, 2-layer bi-, enc.&dec. ×2 88.01 82.60 85.22 0.3x 19.2M

Table 2. Large-scale comparison across model types on intrinsically capitalized Wikipedia edit history data set.

Capitalization Model Perplexity
50% corrupt 59.41
25% corrupt 54.68
5-gram FST 51.74

hier. RNN 51.60
oracle 51.61

Table 3. Perplexities of RNN language models on LM1B
using different capitalization normalization methods.

word completions, and next word predictions. In this section,
we report the results of an A/B experiment on real users. The
two systems under comparison differ only in the cased lan-
guage models they use in decoding. The baseline uses the
pruned FST model for capitalization normalization. The new
system uses the hierarchical RNN model for capitalization
normalization. The normalization step is done in a distributed
fashion on users’ devices before privacy-preserving Federated
Learning of neural language models [7] starts. The two result-
ing LMs have exactly the same architecture [7] and the same
number of parameters. Both are trained for the same number
of rounds which amount to billions of tokens.

Table 4 shows the results of the A/B test using metrics in-
dicative of the prediction accuracy of the virtual keyboard. The
test covers a time span long enough to accumulate statistics
over more than 1 billion typed words. We observe reduc-
tions of word modification rate (WMR) and auto-correction
rejection rate (RAC) in the virtual keyboard usage statistics.
Even though references are impossible to obtain in the A/B
test, these metrics approximate WER (Word Error Rate) with
regard to the intended user input. The reductions are statis-
tically significant as shown by the 95% confidence intervals.
We also observe a small but non-significant reduction of Out-
of-vocabulary (OOV) rate by 0.4%. The OOV rate changes
because the vocabulary size is identical in both LMs. Capital-
ization normalization causes the frequency ranking of word
types to change.

4.4. Case-aware Language Models in Speech Recognition

Our speech recognizer is a streaming Conformer acoustic
model [26] integrated with a Conformer language model [27]

Model WMR RAC
5-gram FST 5.81% 2.91%
hier. RNN 5.78% 2.87%

Rel. Reduction [-0.92,-0.11]% [-2.21, -0.69]%

Table 4. Virtual keyboard A/B experiment results. WMR is
the fraction of words modified or retyped. RAC is the auto-
correction rejection rate. The last row shows the 95% confi-
dence interval of the relative reductions.

via HAT shallow fusion [28], and we measure performance
on a ∼10k sample of Google voice search traffic with natively
capitalized reference transcripts. When the acoustic model
is fixed and the output tokens are cased, we show that im-
proving capitalization normalization of the language model
training data leads to reduction of upper-case error rate (UER),
the character error rate of each capitalized character in either
the predicted or reference transcript (Table 5). Importantly,
the overall case-insensitive WER is also reduced, likely due
to the language model inducing more favorable beam search
decisions.

Model WER UER
5-gram FST 5.8 32.6
hier. RNN 5.6 32.4

Table 5. ASR LM fusion experiment results. The two systems
in comparison differ only in the capitalization normalization
model used to pre-process the LM training data.

5. CONCLUSIONS

Truecasing provides a factored solution to improve case-aware
language modeling for applications such as ASR and text
input in virtual keyboards. We propose a hierarchical word-
and-character-based RNN model with the speed advantage
of word-based models and accuracy advantage of character-
based models. The model is efficient enough to be uploaded
to mobile devices to train a language model using Federated
Learning. The improvement is manifested in reduction of
prediction error rates in a large-scale A/B experiment using a
virtual keyboard and an ASR LM fusion experiment.
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