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Introduction

In real world, the raw point clouds produced from depth cameras and LiDAR sensors areoften sparse, noisy, and non-uniform.



Introduction

The point cloud upsampling technology that aims at generating dense, uniform andcomplete point clouds.



Problems

1. Previous methods require paired sparse-dense data in the network training, thesesupervised methods cannot be trained with real-scanned datasets such as ScanNetand KITTI where paired dense point clouds are unavailable.
— PU-Net
— PU-GAN
— MPU
— Dis-PU

2. The distributions gap between synthetic point cloud data and real scans usuallydegrades the performance of the model trained on synthetic data when applied toreal scans.



Motivation

To resolve the above problems, we cast point cloud sampling as the OT problem andpropose PU-CycGAN. Through the design of Densifier, Sparsifier and consistency loss,self-restraint loss, our model can be trained with unpaired point sets. In addition, basedon OT quadratic transport cost, our upsampling model can converge to a local equilibriumpoint.



Contribution

1. We propose a weakly supervised point cloud upsampling framework that trains themodel with unpaired point clouds.2. We notably regard point cloud upsampling as an OT problem, and design a quadraticWasserstein distance to stabilize GAN’s training.3. We introduce consistency loss and self-restraint loss to improve the performance of themodel in underlying surface representation.4. Extensive experiments demonstrate that our method achieves comparable results tothe SOTA supervised methods, especially on real data.
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Methodology

Given M sparse point sets P = {{pj
i}N

j=1}M
i=1 and unpaired dense point sets

Q = {{qk
i }rN

k=1}M
i=1, we aim to learn a map which transports the sparse point sets todense and uniformly distributed point set. Where N denotes the number of points in eachsparse point set, r is the upsampling rate.



MethodologyThe diagram of the proposed PU-CycGAN

• Densifier GQ and Sparsifer GP aregenerators which are used to fit themap P → Q andQ → P .
• Sparse discriminator DP and Densediscriminator DQ.

where DP aims to distinguish between P and generated sparse point sets GP(Q), DQaims to discriminate betweenQ and GQ(P).



MethodologyThe diagram of the proposed PU-CycGAN

• sparse-dense-sparse ( test green)
• dense-sparse-dense ( test red)

Through the data cycles, our model is expected to capture the inherent upsamplingpatterns and generate dense patches that are uniformly distributed on the target surface.



MethodologyWe regard point cloud upsampling as an OT problem

GANs accomplish two major tasks:
1. manifold learning
2. probability distribution transformation

Specifically,
• the generator computes the OT map
• the discriminator computes the Wasserstein distance between the generated andthe real distribution



MethodologyWe regard point cloud upsampling as an OT problem
discrete Monge-Kantorovich dual problem:

max
ϕ,ψ

1
m

∑
yi∈Y

ϕ(yi)−
1
n

∑
xj∈X

ψ(xj)

s.t. ψ(yi)− ϕ(xj) ≤ c(xj, yi) ∀yi ∈ Y,∀xj ∈ X 1
Liu et al. proposed WGAN-QC which is based on the quadratic transport cost:

c(xj, yi) =
1
2
∥xj − yi∥2

2 2
When Equation (2) is applied, the optimal objective in Equation (1) equals to the quadraticWasserstein distance



MethodologyWe regard point cloud upsampling as an OT problem
Quadratic Wasserstein Loss
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w
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MethodologyWe regard point cloud upsampling as an OT problem

Further, to stabilize the optimization of the generator, we set the adversarial loss of thegenerators GQ and GP as a quadratic function, which is

Ladv(xi, yi) =

(
1
B

B∑
i=1

Dw(yi)−
1
B

B∑
i=1

Dw(xi)

)2

Here, when
• xi = GQ(GP(qi))and yi = qi, Dw is DQ.
• xi = GP(GQ(pi))and yi = pi, DwisDP .



MethodologyCycle Consistency Loss

Cycle Consistency LossTo eliminates the need of paired data, we proposed an point cloud upsamplingconsistency loss which is defined as follows:
Lcyc = dEM(pi,GP(GQ(pi))) + dEM(qi,GQ(GP(qi)))



MethodologySelf Restraint Loss

Self Restraint LossWithout paired point sets as the supervision, we define a self-restraint loss to ensure thatthe generated points are distributed on the underlying surface. Herein, self-restraint lossuses the Chamfer distance to measure the loss between sparsified or densified point setand the original one, which is
Lsel(xi, zi) =

1
N

N∑
j=1

min
xik∈xi

∥zij − xik∥2
2 +

1
rN
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k=1
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2



MethodologyLoss Function

The final total loss of PU-CycGAN’s generator Densifier and Sparsifier is the weighted sumof consistency loss, self-restraint loss, uniform loss and adversarial loss:
LG = λcycLcyc

+ λsel(Lsel(GQ(pi), pi)) + λsel(Lsel(GP(qi), qi))

+ λuni(Luni(GQ(pi))) + Luni(GQ(GP(qi)))

+ λadv(Ladv(qi,GQ(GP(qi)))) + Ladv(pi,GP(GQ(pi)))
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ExperimentsDatasets

To compare with baseline methods, we first train models on PU1K and PU-GAN’s datasetswhich are cropped into dense and downsampled sparse point clouds patches respectively.Then we train a model with upaired real-scanned sparse KITTI and dense SEMANTIC3Ddata to demonstrate the capability and advantages of our method in the real applicationswith unpaired data.



ExperimentsComparisons on PU1K against supervised methods.



ExperimentsQualitative comparisons on KITTI



ExperimentsAblation Study



Summary

• Through the design of Densifier, Sparsifier and consistency loss, self-restraint loss,our PU-CycGAN can be trained on unpaired point clouds.
• Moreover, by using quadratic transport cost, our method greatly improved instability and convergence speed.
• Especially, we can train with sparse and dense point clouds from different scenes, soas to overcome the demand for high-density point clouds in the real scene andimprove the generalization ability of the model.
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