td 2t 5

llllllllllllllllllllllllll

WEAKLY SUPERVISED POINT CLOUD UPSAMPLING VIA OPTIMAL
TRANSPORT

T &

Zezeng Li Weimin Wang Na Lei* Rui Wang




Outlines

Introduction
Methodology
Experiments

Summary



Outlines

Introduction

Methodology

Experiments

Summary



Introduction

non-uniform

outlier

In real world, the raw point clouds produced from depth cameras and LiDAR sensors are
often sparse, noisy, and non-uniform.



Introduction

“I’ '\n
Upsampling

The point cloud upsampling technology that aims at generating dense, uniform and
complete point clouds.



Problems

1. Previous methods require paired sparse-dense data in the network training, these
supervised methods cannot be trained with real-scanned datasets such as ScanNet
and KITTI where paired dense point clouds are unavailable.
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2. The distributions gap between synthetic point cloud data and real scans usually
degrades the performance of the model trained on synthetic data when applied to
real scans.



Motivation

To resolve the above problems, we cast point cloud sampling as the OT problem and
propose PU-CycGAN. Through the design of Densifier, Sparsifier and consistency loss,
self-restraint loss, our model can be trained with unpaired point sets. In addition, based

on OT quadratic transport cost, our upsampling model can converge to a local equilibrium
point.



Contribution

1. We propose a weakly supervised point cloud upsampling framework that trains the
model with unpaired point clouds.

2. We notably regard point cloud upsampling as an OT problem, and design a quadratic
Wasserstein distance to stabilize GAN'’s training.

3. We introduce consistency loss and self-restraint loss to improve the performance of the
model in underlying surface representation.

4. Extensive experiments demonstrate that our method achieves comparable results to
the SOTA supervised methods, especially on real data.
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Methodology

Given M sparse point sets P = {{p’l}}\’zl}f‘il and unpaired dense point sets

Q= {{q{‘}fil ?il, we aim to learn a map which transports the sparse point sets to
dense and uniformly distributed point set. Where N denotes the number of points in each
sparse point set, r is the upsampling rate.



Methodology

The diagram of the proposed PU-CycGAN
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where Dp aims to distinguish between P and generated sparse point sets G»(Q), Do
aims to discriminate between Q and Go(P).

e Densifier Gg and Sparsifer Gp are
generators which are used to fit the
mapP — Qand Q — P.

e Sparse discriminator Dp and Dense
discriminator Do.




Methodology

The diagram of the proposed PU-CycGAN
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Through the data cycles, our model is expected to capture the inherent upsampling
patterns and generate dense patches that are uniformly distributed on the target surface.



Methodology

We regard point cloud upsampling as an OT problem

GANs accomplish two major tasks:

1. manifold learning

2. probability distribution transformation
Specifically,

e the generator computes the OT map

e the discriminator computes the Wasserstein distance between the generated and
the real distribution



Methodology

We regard point cloud upsampling as an OT problem

discrete Monge-Kantorovich dual problem:
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Liu et al. proposed WGAN-QC which is based on the quadratic transport cost:

1
c(xj,yi) = EHXJ‘ — i3 2

When Equation (2) is applied, the optimal objective in Equation (1) equals to the quadratic
Wasserstein distance



Methodology

We regard point cloud upsampling as an OT problem

Quadratic Wasserstein Loss



Methodology

We regard point cloud upsampling as an OT problem

Further, to stabilize the optimization of the generator, we set the adversarial loss of the
generators Gg and Gp as a quadratic function, which is

B 2
Laav(Xi, Vi) —( ZD Vi) Z (Xi)>

Here, when
* X = Go(Gp(qi))and yi = qi, Dy is Do.
e x; = Gp(Go(pi))and y; = p;, DyisDp.



Methodology

Cycle Consistency Loss

Cycle Consistency Loss
To eliminates the need of paired data, we proposed an point cloud upsampling
consistency loss which is defined as follows:

Leye = dpm(pi, Gp(Go(pi))) + dem(qi, Go(Gr(qi)))



Methodology

Self Restraint Loss

Self Restraint Loss

Without paired point sets as the supervision, we define a self-restraint loss to ensure that
the generated points are distributed on the underlying surface. Herein, self-restraint loss
uses the Chamfer distance to measure the loss between sparsified or densified point set
and the original one, which is

Lol (xi,2i) = me |z — x,k||2+—2m1n||zy—x,kH2



Methodology

Loss Function

The final total loss of PU-CycGAN's generator Densifier and Sparsifier is the weighted sum
of consistency loss, self-restraint loss, uniform loss and adversarial loss:

L = AeyeLeye
+ Asel (Lset (Go(pi), Pi)) + Aset (Lser(Gp(i), qi))
+ Auni(Luni(Go(pi))) + Luni(Go(Gr(qi)))
+ Aadv(Ladv(qi: Go(Gp(qi)))) + Laav(pis Gp(Go(pi)))
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Experiments

Datasets

To compare with baseline methods, we first train models on PU1K and PU-GAN'’s datasets
which are cropped into dense and downsampled sparse point clouds patches respectively.
Then we train a model with upaired real-scanned sparse KITTI and dense SEMANTIC3D
data to demonstrate the capability and advantages of our method in the real applications
with unpaired data.



Experiments

Comparisons on PU1K against supervised methods.

Method P2F(10~3) | CD(1073) | HD(1073)
PU-Net [1] 4.834 1.155 15.170
MPU [3] 3.551 0.935 13.327
PU-GAN [4] | 1.590 0.420 5.390
PU-GCN [5] | 2.499 0.585 7.577
Dis-PU [6] 3.143 1.151 14.680
Ours 2.080 0.551 2919




Experiments

Qualitative comparisons on KITTI

Input
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Experiments
Ablation Study

Model | Iy L. | CD(1073)
A v 24.197
B v 0.774
C 27.577
Ful | v 0.551
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Summary

e Through the design of Densifier, Sparsifier and consistency loss, self-restraint loss,
our PU-CycGAN can be trained on unpaired point clouds.

e Moreover, by using quadratic transport cost, our method greatly improved in
stability and convergence speed.

e Especially, we can train with sparse and dense point clouds from different scenes, so
as to overcome the demand for high-density point clouds in the real scene and
improve the generalization ability of the model.



Thank you from your time and attention!
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