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MULTI-LAYER BUTTERFLY MATRIX FACTORIZATION MAIN CONTRIBUTION: HIERARCHICAL METHOD

PROBLEM: Approximate A € C2*2 by a product of J butterfly factors. R?curswely. use algorithms for (2) to factorize a matrix into two
factors at each intermediate level of the hierarchy.
J factors X/, .... X! are called butterfly factors X4X3X2X! XAX3X2X!
(BF) if we have X’ € C2*? and supp(X"p) C supp(SY),V1 < Z < J where > —
JnJ
SUPP(Z) — {(l .]) | Zz] 5& O} and S - IN/2’f’ 029 [ ] X IZf 1 € {0 1}2 XZ /\ Unba|anced X4X3 X2X! Ba|anced
X3 X2x!
m-1 /\
X2 X! X X3 X2 X!

W= -1 Two strategies to perform hierarchical factorization. Each corresponds to a tree
O=0 A matrix Z = X’... X! where X/, ..., X! are butterfly factors.

For any choice of tree, the hierarchical method will
yield J factors X/, ..., X" such that:
1) Exact factorization: Z = X’.. . X!

The Hadamard transform # and its butterfly factors

J
Minimize ||A — I_IX’“pH2 such that X’, ..., X! are BF (D) 2) Recovery: X = D~ !IX%(D?)~! where D’ ...,D° are invertible diagonal matrices
St £=1 satisfying D’ = D’/ = 1.
An algorithm which is more efficient than classical gradient Comparison between the state-of-the-art method [3]
descent, with theoretical guarantee. (ADAM + LBFGS) and our methods (unbalanced and balanced).
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BACKGROUND: FIXED SUPPORT MATRIX FACTORIZATION
Given A € R™" Sl € {0,1}™" and S* € {0,1}™":

Minimize ||A — XY||12p, s.t supp(X) C supp(SL), supp(Y) C supp(SR) (2)
(X,Y)

logy0 of approx. error

XY, + X.,Y,., + X.5Y;. Precision and running time of [3] and our Running time of balanced and unbalanced

methods in the factorization of the Discrete  strategies factorizing a noisy version of a
E Fourier Transform of size 512 (J = 9) product of J butterfly factors, 1 < J < 13.
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