On Identifiable Polytope Characterization for Polytopic Matrix Factorization ICASSP 2022

Bariscan Bozkurt and Alper T. Erdogan KUIS AI-Center and EE Engineering Koc University

Matrix Factorization Problem

Matrix Factorization ProblemPolytopic Matrix Factorization

Matrix Factorization Problem
Polytopic Matrix Factorization
Identifiable Polytopes

Matrix Factorization Problem
Polytopic Matrix Factorization
Identifiable Polytopes
Brute-force Approach

Matrix Factorization Problem
Polytopic Matrix Factorization
Identifiable Polytopes
Brute-force Approach
Group Structure of Symmetries

Matrix Factorization Problem Polytopic Matrix Factorization Identifiable Polytopes Brute-force Approach • Group Structure of Symmetries Exploiting Graph Automorphism

- Matrix Factorization Problem
- Polytopic Matrix Factorization
- Identifiable Polytopes
- Brute-force Approach
- Group Structure of Symmetries
- Exploiting Graph Automorphism
- Proposed Approach

- Matrix Factorization Problem
- Polytopic Matrix Factorization
- Identifiable Polytopes
- Brute-force Approach
- Group Structure of Symmetries
- Exploiting Graph Automorphism
- Proposed Approach
- Numerical Example

Matrix Factorization Problem

Matrix Factorization Problem

Given
$$\mathbf{Y}_{g}$$
, find \mathbf{S}_{g} and \mathbf{H}_{g}

Matrix Factorization Problem

 \mathbf{Y}_{σ} (observations)

 $S_{\sigma}($ latent vectors)

Given \mathbf{Y}_{g} , find \mathbf{S}_{g} and \mathbf{H}_{g}

We need to make assumptions on S_{g} and H_{g}

Matrix Factorization Problem

Nonnegative Matrix Factorization

 $\begin{vmatrix} & \cdots & \\ \mathbf{y}_{g}[1] & \cdots & \mathbf{y}_{g}[N] \end{vmatrix} = \begin{vmatrix} & \mathbf{y}_{g}[N] \\ & \cdots & \end{vmatrix}$

The columns of \mathbf{S}_{g} are drawn from the nonnegative orthant (\mathbb{R}_{+}^{r}) .

s_g[1] ... **s**_g[N]

 $| \dots |$ $\mathbf{y}_{g}[1] \dots \mathbf{y}_{g}[N]$ $| \dots |$

Matrix Factorization Problem

Simplex-Structured Matrix Factorization

Hg

--1 ··· s_g[N]

The columns of S_g are drawn from the unit simplex (Δ).

Matrix Factorization Problem

Sparse Component Analysis

 $\mathbf{y}_{g}[1] \dots \mathbf{y}_{g}[N] =$

The columns of $\mathbf{S}_{\boldsymbol{\varphi}}$ are drawn from the ℓ_1 -norm ball (\mathcal{B}_1) .

... **s**_g[N]

s_g[1]

Matrix Factorization Problem

Bounded Component Analysis

 $\mathbf{y}_{g}[1] \dots \mathbf{y}_{g}[N]$

The columns of S_g are drawn from the ℓ_{∞} -norm ball (\mathcal{B}_{∞}) .

 H_g

 $\mathbf{s}_g[1] \dots \mathbf{s}_g[N]$

Matrix Factorization Problem

Summary: Domains Enabling Identifiability

Matrix Factorization Problem

Summary: Domains Enabling Identifiability

Can we find other domains enabling identifiablity?

Polytopic Matrix Factorization

PMF Generative Model

Polytopic Matrix Factorization

Det-Max Criterion

Identifiable Polytopes

Theorem about Identifiable Polytopes¹:

Fundamental Theorem of PMF

A polytope \mathcal{P} is identifiable if its symmetry group is restricted to component permutations and sign alterations.

¹Gokcan Tatli and Alper T. Erdogan. "Polytopic Matrix Factorization: Determinant Maximization Based Criterion and Identifiability". In: *IEEE Transactions on Signal Processing* 69 (2021), pp. 5431–5447. DOI: 10.1109/TSP.2021.3112918.

Identifiable Polytopes

Example: Four Special Polytopes

Identifiable Polytopes

Example: A Polytope with Mixed Features

 $\mathcal{P} = \left\{ \mathbf{s} \in \mathbb{R}^3 \; \left| egin{array}{c} oldsymbol{s}_1, oldsymbol{s}_2 \in [-1,1], oldsymbol{s}_3 \in [0,1], \ \left\| iggin{bmatrix} oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_2 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ iggin{bmatrix} oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ iggin{bmatrix} oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ iggin{bmatrix} oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ iggin{bmatrix} oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ ellowbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{$ **s_1, s_2**: signed, s_3 : nonnegative **s_1, s_2:** mutually sparse **5**₂, **5**₃: mutually sparse

Identifiable Polytopes

Example: A Polytope with Mixed Features

 $\mathcal{P} = \left\{ \mathbf{s} \in \mathbb{R}^3 \; \left| egin{array}{c} oldsymbol{s}_1, oldsymbol{s}_2 \in [-1,1], oldsymbol{s}_3 \in [0,1], \ \left\| iggin{bmatrix} oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_2 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ iggin{bmatrix} oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ iggin{bmatrix} oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ iggin{bmatrix} oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ iggin{bmatrix} oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ ellowbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{s}_3 \ oldsymbol{s}_1 \ oldsymbol{s}_2 \ oldsymbol{$ \bullet s_1, s_2 : signed, s_3 : nonnegative **s_1, s_2:** mutually sparse **5**₂, **5**₃: mutually sparse

How to determine a polytope's identifiability?

Brute-force Approach

 Let V_P ∈ ℝ^{n×m} be the vertex matrix of P ∈ ℝⁿ containing m vertices of P in its columns.

Brute-force Approach

- Let V_P ∈ ℝ^{n×m} be the vertex matrix of P ∈ ℝⁿ containing m vertices of P in its columns.
- Let $\mathbf{\Pi} \in \mathbb{R}^{m \times m}$ denote a permutation matrix.

Brute-force Approach

- Let V_P ∈ ℝ^{n×m} be the vertex matrix of P ∈ ℝⁿ containing m vertices of P in its columns.
- Let $\mathbf{\Pi} \in \mathbb{R}^{m \times m}$ denote a permutation matrix.
- \mathcal{P} is identifiable \iff $\{\mathbf{G}: \mathbf{GV}_{\mathcal{P}} = \mathbf{V}_{\mathcal{P}}\mathbf{\Pi}, \mathbf{\Pi} \in \mathbb{R}^{m \times m}\}$ only contains signed permutation matrices.

Brute-force Approach

Brute force approach requires search on all possible permutation matrices.

Brute-force Approach

Brute force approach requires search on all possible permutation matrices.

Factorial Complexity !

Group Structure

Lemma

For a given polytope $\mathcal{P} \in \mathbb{R}^n$ with $\mathbf{V}_{\mathcal{P}} \in \mathbb{R}^{n \times m}$, the set

 $\{\mathbf{G} : \mathbf{GV}_{\mathcal{P}} = \mathbf{V}_{\mathcal{P}}\mathbf{\Pi}, \mathbf{\Pi} \in \mathbb{R}^{m \times m}\}$ together with the matrix multiplication forms a group. We denote it with $\mathscr{G}(\mathcal{P})$

Group Structure

Theorem

Let $Gen(\mathscr{G}(\mathcal{P})) = \{\mathbf{G}_1, \mathbf{G}_2, \dots, \mathbf{G}_r\}$ be the generating set of $\mathscr{G}(\mathcal{P})$ for a given polytope $\mathcal{P} \in \mathbb{R}^n$. If all the elements of $Gen(\mathscr{G}(\mathcal{P}))$ are signed permutation matrices, then \mathcal{P} is identifiable.

Group Structure

Theorem

Let $Gen(\mathscr{G}(\mathcal{P})) = \{\mathbf{G}_1, \mathbf{G}_2, \dots, \mathbf{G}_r\}$ be the generating set of $\mathscr{G}(\mathcal{P})$ for a given polytope $\mathcal{P} \in \mathbb{R}^n$. If all the elements of $Gen(\mathscr{G}(\mathcal{P}))$ are signed permutation matrices, then \mathcal{P} is identifiable.

How to determine $Gen(\mathscr{G}(\mathcal{P}))$?

Group Structure

Theorem

Let $Gen(\mathscr{G}(\mathcal{P})) = \{\mathbf{G}_1, \mathbf{G}_2, \dots, \mathbf{G}_r\}$ be the generating set of $\mathscr{G}(\mathcal{P})$ for a given polytope $\mathcal{P} \in \mathbb{R}^n$. If all the elements of $Gen(\mathscr{G}(\mathcal{P}))$ are signed permutation matrices, then \mathcal{P} is identifiable.

How to determine $Gen(\mathscr{G}(\mathcal{P}))$?

What is $|Gen(\mathscr{G}(\mathcal{P}))|$?

Graph Automorphism Group

Exploit Graph Automorphism Algorithms!

Graph Automorphism Group

Exploit Graph Automorphism Algorithms!

• For $\mathcal{P} \in \mathbb{R}^n$ with $\mathbf{V}_{\mathcal{P}} \in \mathbb{R}^{n \times m}$,

Graph Automorphism Group

Exploit Graph Automorphism Algorithms!

• For $\mathcal{P} \in \mathbb{R}^n$ with $\mathbf{V}_{\mathcal{P}} \in \mathbb{R}^{n \times m}$. • Let $\mathbf{Q} = \mathbf{V}_{\mathcal{P}} \mathbf{V}_{\mathcal{P}}^T \in \mathbb{R}^{n \times n}$,

Graph Automorphism Group

Exploit Graph Automorphism Algorithms!

For \$\mathcal{P} ∈ \mathbb{R}^n\$ with \$\mathbb{V}_\mathcal{P} ∈ \mathbb{R}^{n × m}\$,
Let \$\mathbb{Q} = \mathbb{V}_\mathcal{P} \mathbb{V}_\mathcal{P}^T ∈ \mathbb{R}^{n × n}\$,
Let \$\mathbb{C} = \mathbb{V}_\mathcal{P}^T \mathbb{Q}^{-1} \mathbb{V}_\mathcal{P} ∈ \mathbb{R}^{m × m}\$

Graph Automorphism Group

Exploit Graph Automorphism Algorithms!

For \$\mathcal{P} ∈ \mathbb{R}^n\$ with \$\mathbb{V}_\mathcal{P} ∈ \mathbb{R}^{n × m}\$,
Let \$\mathbb{Q} = \mathbb{V}_\mathcal{P} \mathbb{V}_\mathcal{P}^T ∈ \mathbb{R}^{n × n}\$,
Let \$\mathbb{C} = \mathbb{V}_\mathcal{P}^T \mathbb{Q}^{-1} \mathbb{V}_\mathcal{P} ∈ \mathbb{R}^{m × m}\$,

• Let $G_{\mathcal{P}}$ be the edge-colored complete graph where edge color from *i*-th node to *j*-th node is $\mathbf{V}_{\mathcal{P},j}^{\mathcal{T}} \mathbf{Q}^{-1} \mathbf{V}_{\mathcal{P},j}$

Graph Automorphism Group

• Graph Automorphism Group: $\mathscr{G}(G_{\mathcal{P}}) = \{ \mathbf{\Pi} \in \mathbb{R}^{m \times m} : \mathbf{C} = \mathbf{\Pi}^T \mathbf{C} \mathbf{\Pi} \}$

Graph Automorphism Group

• Graph Automorphism Group: $\mathscr{G}(\mathcal{G}_{\mathcal{P}}) = \{ \mathbf{\Pi} \in \mathbb{R}^{m \times m} : \mathbf{C} = \mathbf{\Pi}^{\mathsf{T}} \mathbf{C} \mathbf{\Pi} \}$

 $\mathscr{G}(\mathcal{G}_{\mathcal{P}}) \cong \mathscr{G}(\mathcal{P}) \ (\cong \text{ denotes isomorphism})$

Graph Automorphism Group

• Graph Automorphism Group: $\mathscr{G}(G_{\mathcal{P}}) = \{ \mathbf{\Pi} \in \mathbb{R}^{m \times m} : \mathbf{C} = \mathbf{\Pi}^T \mathbf{C} \mathbf{\Pi} \}$

 $\mathscr{G}(\mathcal{G}_{\mathcal{P}}) \cong \mathscr{G}(\mathcal{P}) \ (\cong \text{ denotes isomorphism})$ $||Gen(\mathscr{G}(G_{\mathcal{P}}))| \leq m-1$

²Tommi Junttila and Petteri Kaski. "Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs". In: *Proceedings of the Meeting on Algorithm Engineering & Experiments*. New Orleans, Louisiana: Society for Industrial and Applied Mathematics, 2007, 135–149.

Graph Example

Graph Example

$$\mathbf{C}_{i,j} = \begin{cases} 0.5 & i = j, \\ -0.5 & |i - j| = 3, \\ 0 & \text{otherwise.} \end{cases}$$

Proposed Approach

Identifiability Characterization

• Construct $G_{\mathcal{P}}$ from a given polytope $\mathcal{P} \in \mathbb{R}^n$

Proposed Approach

Identifiability Characterization

Construct G_P from a given polytope P ∈ ℝⁿ
Compute Gen(G(G_P)) using graph automorphism algorithm.

Proposed Approach

Identifiability Characterization

Construct G_P from a given polytope P ∈ ℝⁿ
Compute Gen(G(G_P)) using graph automorphism algorithm.
Find Gen(G(P)) from Gen(G(G_P)).

Proposed Approach

Identifiability Characterization

- Construct $G_{\mathcal{P}}$
 - from a given polytope $\mathcal{P} \in \mathbb{R}^n$
- Compute $Gen(\mathscr{G}(G_{\mathcal{P}}))$ using graph automorphism algorithm.
- Find $Gen(\mathscr{G}(\mathcal{P}))$ from $Gen(\mathscr{G}(\mathcal{G}_{\mathcal{P}}))$.
- Check if each element in
 Gen(G(P)) is signed permutation.

Numerical Example

■ Random polytopes $\mathcal{P} = \{ \mathbf{s} \in \mathbb{R}^n | \mathbf{A}\mathbf{s} \preceq \mathbf{b} \}$ up to dimension 10.

Numerical Example

Random polytopes P = {s ∈ ℝⁿ | As ≤ b} up to dimension 10.
Nonnegativity s_j ∈ [0, 1], or signed, i.e., s_j ∈ [-1, 1] constraints on the components are randomly decided.

Numerical Example

- Random polytopes $\mathcal{P} = \{ \mathbf{s} \in \mathbb{R}^n | \mathbf{A}\mathbf{s} \preceq \mathbf{b} \}$ up to dimension 10.
- Nonnegativity $\mathbf{s}_j \in [0, 1]$, or signed, i.e., $\mathbf{s}_j \in [-1, 1]$ constraints on the components are randomly decided.
- Random number of sparsity constraint on sub-vectors with random length is decided $\left\| \begin{bmatrix} \mathbf{s}_{j_1^{(i)}} & \mathbf{s}_{j_2^{(i)}} & \dots & \mathbf{s}_{j_{l_i}^{(i)}} \end{bmatrix} \right\|_1 \leq 1.$

Numerical Example

Algorithm 1 utilizes graph automorphism algorithm.

