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Matrix Factorization Problem
Generative Model

. . .

yg [1] . . . yg [N]

. . .


︸ ︷︷ ︸

Yg (observations)

=

 Hg


︸ ︷︷ ︸
Hg (linear transf.)


. . .

sg [1] . . . sg [N]

. . .


︸ ︷︷ ︸

Sg ( latent vectors)

Given Yg , find Sg and Hg

We need to make assumptions on Sg and Hg



On Identifiable Polytope Characterization for Polytopic Matrix Factorization

Matrix Factorization Problem
Generative Model

. . .

yg [1] . . . yg [N]

. . .


︸ ︷︷ ︸

Yg (observations)

=

 Hg


︸ ︷︷ ︸
Hg (linear transf.)


. . .

sg [1] . . . sg [N]

. . .


︸ ︷︷ ︸

Sg ( latent vectors)

Given Yg , find Sg and Hg

We need to make assumptions on Sg and Hg



On Identifiable Polytope Characterization for Polytopic Matrix Factorization

Matrix Factorization Problem
Generative Model

. . .

yg [1] . . . yg [N]

. . .


︸ ︷︷ ︸

Yg (observations)

=

 Hg


︸ ︷︷ ︸
Hg (linear transf.)


. . .

sg [1] . . . sg [N]

. . .


︸ ︷︷ ︸

Sg ( latent vectors)

Given Yg , find Sg and Hg

We need to make assumptions on Sg and Hg



On Identifiable Polytope Characterization for Polytopic Matrix Factorization

Matrix Factorization Problem
Nonnegative Matrix Factorization

The columns of Sg are drawn from the nonnegative orthant (Rr
+).


. . .

yg [1] . . . yg [N]

. . .

 =

 Hg




. . .

sg [1] . . . sg [N]

. . .
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Matrix Factorization Problem
Simplex-Structured Matrix Factorization
The columns of Sg are drawn from the unit simplex (∆).
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. . .
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Matrix Factorization Problem
Sparse Component Analysis
The columns of Sg are drawn from the ℓ1-norm ball (B1).
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Matrix Factorization Problem
Bounded Component Analysis
The columns of Sg are drawn from the ℓ∞-norm ball (B∞).
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Matrix Factorization Problem

Summary: Domains Enabling Identifiability

Rr
+

NMF

∆

SSMF

B1

SCA

B∞

BCA

Can we find other domains enabling identifiablity?
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Polytopic Matrix Factorization
PMF Generative Model
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Polytopic Matrix Factorization
Det-Max Criterion
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Identifiable Polytopes

Theorem about Identifiable Polytopes1:

Fundamental Theorem of PMF

A polytope P is identifiable if its sym-

metry group is restricted to component

permutations and sign alterations.

1Gokcan Tatli and Alper T. Erdogan. “Polytopic Matrix
Factorization: Determinant Maximization Based Criterion and
Identifiability”. In: IEEE Transactions on Signal Processing 69
(2021), pp. 5431–5447. doi: 10.1109/TSP.2021.3112918.

https://doi.org/10.1109/TSP.2021.3112918
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Identifiable Polytopes

Example: Four Special Polytopes

Antisparse Sparse Nonnegative Nonnegative
Antisparse Sparse
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Identifiable Polytopes
Example: A Polytope with Mixed Features

P =

s ∈ R3

∣∣∣∣∣∣
s1, s2 ∈ [−1, 1], s3 ∈ [0, 1],∥∥∥∥[ s1

s2

]∥∥∥∥
1

≤ 1,

∥∥∥∥[ s2
s3

]∥∥∥∥
1

≤ 1


s1, s2: signed, s3: nonnegative

s1, s2: mutually sparse

s2, s3: mutually sparse

How to determine a polytope’s identifiability?
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Brute-force Approach

Let VP ∈ Rn×m be the vertex matrix of

P ∈ Rn containing m vertices of P in its

columns.

Let Π ∈ Rm×m denote a permutation

matrix.

P is identifiable ⇐⇒
{G : GVP = VPΠ,Π ∈ Rm×m} only

contains signed permutation matrices.
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Brute-force Approach

Brute force approach requires search on all

possible permutation matrices.

Factorial Complexity !
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Group Structure

Lemma

For a given polytope P ∈ Rn with VP ∈
Rn×m, the set

{G : GVP = VPΠ,Π ∈ Rm×m}
together with the matrix multiplication

forms a group. We denote it with G (P)
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Group Structure

Theorem

Let Gen(G (P)) = {G1,G2, . . . ,Gr} be

the generating set of G (P) for a given

polytope P ∈ Rn. If all the elements of

Gen(G (P)) are signed permutation ma-

trices, then P is identifiable.

How to determine Gen(G (P))?

What is |Gen(G (P))|?
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Graph Automorphism Group

Exploit Graph Automorphism Algorithms!
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Graph Automorphism Group

Exploit Graph Automorphism Algorithms!

For P ∈ Rn with VP ∈ Rn×m,

Let Q = VPVT
P ∈ Rn×n,

Let C = VT
PQ

−1VP ∈ Rm×m

Let GP be the edge-colored complete graph

where edge color from i -th node to j -th

node is VT
P:,i

Q−1VP:,j
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Graph Automorphism Group

Graph Automorphism Group:

G (GP) = {Π ∈ Rm×m : C = ΠTCΠ}

G (GP) ∼= G (P) (∼= denotes isomorphism)
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Graph Automorphism Group

Graph Automorphism Group:

G (GP) = {Π ∈ Rm×m : C = ΠTCΠ}

G (GP) ∼= G (P) (∼= denotes isomorphism)

|Gen(G (GP))| ≤ m − 1 2

2Tommi Junttila and Petteri Kaski. “Engineering an Efficient
Canonical Labeling Tool for Large and Sparse Graphs”. In:
Proceedings of the Meeting on Algorithm Engineering &
Expermiments. New Orleans, Louisiana: Society for Industrial and
Applied Mathematics, 2007, 135–149.
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Graph Example

B1
G (B1)

For B1 ∈ R3, VB1 =
[
I −I

]

Coloring matrix C as

Ci ,j =


0.5 i = j ,

−0.5 |i − j | = 3,

0 otherwise.
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Proposed Approach

Identifiability Characterization

Construct GP
from a given polytope P ∈ Rn

Compute Gen(G (GP)) using graph

automorphism algorithm.

Find Gen(G (P)) from Gen(G (GP)).

Check if each element in

Gen(G (P)) is signed permutation.
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Numerical Example

Random polytopes P = {s ∈ Rn|As ⪯ b}
up to dimension 10.

Nonnegativity sj ∈ [0, 1], or signed, i.e.,

sj ∈ [−1, 1] constraints on the components

are randomly decided.

Random number of sparsity constraint on

sub-vectors with random length is decided∥∥∥[ s
j
(i)
1

s
j
(i)
2

. . . s
j
(i)
li

]∥∥∥
1
≤ 1.
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Numerical Example
Algorithm 1 utilizes graph automorphism

algorithm.


