

On Identifiable Polytope Characterization for Polytopic Matrix Factorization

Bariscan Bozkurt and Alper T. Erdogan, Electrical-Electronics Engineering and KUIS AI-CENTER, Koc University IEEE ICASSP 2022

Polytopic Matrix Factorization

- Latent Vectors: $\mathcal{S}_g = \{\mathbf{s}_g(1), \dots, \mathbf{s}_g(N)\} \subset \mathcal{P}$ where \mathcal{P} is a polytope in $\subset \mathbb{R}^r$. Define $\mathbf{S}_g = \begin{bmatrix} \mathbf{s}_g(1) & \dots & \mathbf{s}_g(N) \end{bmatrix} \in \mathbb{R}^{r \times N}$.
- Linear Transformation: Linearly transformed latent vectors:

$$\mathbf{y}(k) = \mathbf{H}_g \mathbf{s}_g(k), \quad k \in \{1, \dots, N\}.$$

where $\mathbf{H}_q \in \mathbb{R}^{M \times r}$ is full column-rank.

Observation matrix: $\mathbf{Y} = \mathbf{H}_q \mathbf{S}_q \in \mathbb{R}^{M \times N}$

• Goal: Obtain estimates of \mathbf{H}_q and \mathbf{S}_q satisfying:

 $\mathbf{H} = \mathbf{H}_{q} \mathbf{D}^{-1} \mathbf{\Pi}^{T}$ $\mathbf{S} = \mathbf{\Pi} \mathbf{D} \mathbf{S}_q,$

where Π is a permutation matrix and D is a fullrank diagonal matrix.

PMF: Sufficiently Scattered Set

- \mathcal{S}_q is a sufficiently scattered set of \mathcal{P} iff
- $\operatorname{conv}(\mathcal{S}_q) \supset \mathcal{E}_{\mathcal{P}}$ where $\mathcal{E}_{\mathcal{P}}$ is the maximum volume inscribed ellipsoid of \mathcal{P} ,
- $\operatorname{bd}(\mathcal{P}) \cap \operatorname{conv}(\mathcal{S}_q) = \operatorname{bd}(\mathcal{P}) \cap \mathcal{E}_{\mathcal{P}}.$

Det-Max Criterion

Det-Max Criterion for Matrix Factorization

maximize

 $\det(\mathbf{R}_{\mathbf{s}})$ subject to $\mathbf{R}_{\mathbf{s}} = \frac{1}{N} \sum_{k=1}^{N} \mathbf{S}_{:,k} \mathbf{S}_{:,k}^{T}$ $\mathbf{Y} = \mathbf{HS}$ $\mathbf{S}_{\ldots k} \in \mathcal{D}, \ k = 1, \ldots, N.$

If \mathcal{P} is an identifiable polytope, and \mathcal{S}_q is a sufficiently scattered set of \mathcal{P} , then any global optimum $(\mathbf{H}_*, \mathbf{S}_*)$ of Det-Max Criterion satisfy

> $\mathbf{H}_{*} = \mathbf{H}_{h}\mathbf{D}^{-1}\mathbf{\Pi}^{T}$ $\mathbf{S}_* = \mathbf{\Pi} \mathbf{D} \mathbf{S}_q,$

