On Identifiable Polytope Characterization for Polytopic Matrix Factorization

Polytopic Matrix Factorization

- Latent Vectors: $\mathcal{S}_{q}=\left\{\mathbf{s}_{q}(1), \ldots, \mathbf{s}_{g}(N)\right\} \subset \mathcal{P}$
where \mathcal{P} is a polytope in $\subset \mathbb{R}^{r}$.
Define $\mathbf{S}_{g}=\left[\begin{array}{lll}\mathbf{s}_{g}(1) & \ldots & \mathbf{s}_{g}(N)\end{array}\right] \in \mathbb{R}^{r \times N}$.
- Linear Transformation: Linearly transformed latent vectors:

$$
\mathbf{y}(k)=\mathbf{H}_{g} \mathbf{s}_{g}(k), \quad k \in\{1, \ldots, N\} .
$$

where $\mathbf{H}_{g} \in \mathbb{R}^{M \times r}$ is full column-rank.
Observation matrix: $\mathbf{Y}=\mathbf{H}_{g} \mathbf{S}_{g} \in \mathbb{R}^{M \times N}$

- Goal: Obtain estimates of \mathbf{H}_{g} and \mathbf{S}_{g} satisfying:

$$
\begin{aligned}
\mathbf{H} & =\mathbf{H}_{g} \mathbf{D}^{-1} \mathbf{\Pi}^{T} \\
\mathbf{S} & =\boldsymbol{\Pi D S}_{g}
\end{aligned}
$$

where $\boldsymbol{\Pi}$ is a permutation matrix and \mathbf{D} is a fullrank diagonal matrix.

PMF: Sufficiently Scattered Set

\mathcal{S}_{g} is a sufficiently scattered set of \mathcal{P} iff

- $\operatorname{conv}\left(\mathcal{S}_{g}\right) \supset \mathcal{E}_{\mathcal{P}}$ where $\mathcal{E}_{\mathcal{P}}$ is the maximum volume inscribed ellipsoid of \mathcal{P},
- $\operatorname{bd}(\mathcal{P}) \cap \operatorname{conv}\left(\mathcal{S}_{g}\right)=\operatorname{bd}(\mathcal{P}) \cap \mathcal{E}_{\mathcal{P}}$

Det-Max Criterion
Det-Max Criterion for Matrix
Factorization

\mathcal{B}_{∞}
Antisparse

Identifiable Polytopes

Fundamental Theorem of PMF

A polytope \mathcal{P} is identifiable if its symmetry group is restricted to component permutations and sign alterations.

Example: A Polytope with Mixed Features:

- s_{1}, s_{2} : mutually sparse
- s_{2}, s_{3} : mutually sparse

Brute Force Approach

- Let $\mathbf{V}_{\mathcal{P}} \in \mathbb{R}^{n \times m}$ be the vertex matrix of $\mathcal{P} \in$ \mathbb{R}^{n} containing m vertices of \mathcal{P} in its columns.
- Let $\Pi \in \mathbb{R}^{m \times m}$ denote a permutation matrix.
- \mathcal{P} is identifiable \Longleftrightarrow the set $\left\{\mathbf{G}: \mathbf{G} \mathbf{V}_{\mathcal{P}}=\mathbf{V}_{\mathcal{P}} \boldsymbol{\Pi}, \boldsymbol{\Pi} \in \mathbb{R}^{m \times m}\right\}$ only contains signed permutation matrices.
- Brute force approach requires a search on all possible permutation matrices.
- Factorial Complexity!
- We can exploit the group structure.

Group Structure
Lemma
For a given polytope $\mathcal{P} \in \mathbb{R}^{n}$ with $\mathbf{V}_{\mathcal{P}} \in$ $\mathbb{R}^{n \times m}$, the set $\left\{\mathbf{G}: \mathbf{G V}_{\mathcal{P}}=\mathbf{V}_{\mathcal{P}} \boldsymbol{\Pi}, \mathbf{\Pi} \in \mathbb{R}^{m \times m}\right\}$ together with the matrix multiplication forms a group. We denote it with $\mathscr{G}(\mathcal{P})$. \qquadLet $\operatorname{Gen}(\mathscr{G}(\mathcal{P}))=\left\{\mathbf{G}_{1}, \mathbf{G}_{2}, \ldots, \mathbf{G}_{r}\right\}$ be the generating set of $\mathscr{G}(\mathcal{P})$ for a given polytope $\mathcal{P} \in \mathbb{R}^{n}$. Then, \mathcal{P} is identifiable if and only if each element of $G e n(\mathscr{G}(\mathcal{P}))$ is a signed per- mutation matrix.

Graph Representation

Find $\operatorname{Gen}(\mathscr{G}(\mathcal{P}))$ via graph automorphism algorithms.

\mathcal{B}_{1}

$G_{\mathcal{B}_{1}}$

- Let $\mathcal{P} \in \mathbb{R}^{n}$ be polytope with vertex matrix $\mathbf{V}_{\mathcal{P}} \in \mathbb{R}^{n \times m}$.
- Let $\mathbf{Q}=\mathbf{V}_{\mathcal{P}} \mathbf{V}_{\mathcal{P}}^{T} \in \mathbb{R}^{n \times n}$

$$
\text { and } \mathbf{C}=\mathbf{V}_{\mathcal{P}}^{T} \mathbf{Q}^{-1} \mathbf{V}_{\mathcal{P}} \in \mathbb{R}^{m \times m}
$$

- Construct an edge-colored complete graph $G_{\mathcal{P}}$ with m nodes where each pair of distinct nodes are connected.
- The edge color from $i^{t h}$ node to $j^{t h}$ node is given by $\mathbf{V}_{\mathcal{P}_{:}, i}^{T} \mathbf{Q}^{-1} \mathbf{V}_{\mathcal{P}_{:, j}}$ (entry of $\mathbf{C}_{i, j}$).
- Graph Automorphism Group $\mathscr{G}\left(G_{\mathcal{P}}\right)=\left\{\boldsymbol{\Pi} \in \mathbb{R}^{m \times m}: \mathbf{C}=\boldsymbol{\Pi}^{T} \mathbf{C} \boldsymbol{\Pi}\right\}$
- $\mathscr{G}\left(G_{\mathcal{P}}\right) \cong \mathscr{G}(\mathcal{P})(\cong$ denotes isomorphism. $)$

Identifiability Approach
Identifiability Characterization

- Construct $G_{\mathcal{P}}$ from a given polytope $\mathcal{P} \in \mathbb{R}^{n}$
- Compute $\operatorname{Gen}\left(\mathscr{G}\left(G_{\mathcal{P}}\right)\right)$ using graph automorphism algorithm.
- Find $\operatorname{Gen}(\mathscr{G}(\mathcal{P}))$ from $\operatorname{Gen}\left(\mathscr{G}\left(G_{\mathcal{P}}\right)\right)$.
- Check if each element in $\operatorname{Gen}(\mathscr{G}(\mathcal{P}))$ is signed permutation.

Numerical Example

- Random polytopes in \mathbb{R}^{n}, for $n \leq 10$.
- Random nonnegative $s_{j} \in[0,1]$, or signed, i.e. $s_{j} \in[-1,1]$ components.
- Random sparse sub-vectors,
$\left\|\left[\begin{array}{llll}s_{j_{1}^{(i)}} & s_{j_{2}^{(i)}} & \ldots & s_{j_{l_{i}}^{(i)}}\end{array}\right]\right\|_{1} \leq 1$

Selected References

[1] Gokcan Tatli and Alper T. Erdogan, Polytopic matrix
factorization: Determinant maximization based criterion factorization: Determinant maximization based criterion and identifiability, IEEE Transactions on Signal Processing
vol.69, no.16, pp. 5431-47, 2021.
[2] David Bremner, Mathieu Dutour Sikirić, Dimitrii V. Pasechmetry groups of polyhedra, LMS Schannann, Computing symmetry groups of polyhedra, LMS Journal of Com
and Mathematics, vol. 17, no. 1, pp.565-581, 2014.
[3] Tommi Junttila and Petteri Kaski, Engineering an efficient canonical labeling tool for large and sparse graphs. Proceed
ings of the Meeting on Algorithm Engineering \& Experiments. New Orleans, Louisiana: Society for Industrial and Applied
Mathematics, 2007, 135-149.

