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Identifiability Approach

Group Structure

e Latent Vectors: S, = {s,(1),...,5,(N)} C P
where P is a polytope in C R".
Define Sy, = | sg4(1) sg(N) | e RN,

Fundamental Theorem of PMF

A polytope P is identifiable if its symmetry
oroup is restricted to component permuta-

For a given polytope P € R™ with Vp &
R™*™ the set

Identifiability Characterization

Construct Gp from a given polytope
P eR"

{G : GVp = VpIIL II € R™*™} together
with the matrix multiplication forms a group.

We denote it with 4(P).

e Linear Transformation: Linearly transformed tions and sign alterations.

latent vectors:

Compute Gen(¥4(Gp)) using graph au-

tomorphism algorithm.
Example: Four Special Polytopes:

y(k) = H,s,(k), ke{l,...,N}.

Find Gen(¥4(P)) from Gen(¥4(Gp)).

Theorem

where H, € R™*" ig full column-rank. Check if each element in Gen(¥4(P)) is

signed permutation.

Let Gen(49(P)) = {G1,Ga,...,G,} be the
generating set of ¢ (P) for a given polytope
P € R™. Then, P is identifiable if and only
if each element of Gen(¥4(P)) is a signed per-
mutation matrix.

Observation matrix:Y = H,S, € RMXN
Baarriioh By Jel:

e Goal: Obtain estimates of H, and S, satistying:

Nonnegative  Nonnegative
Antisparse Sparse

Antisparse Sparse
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Graph Representation

where II is a permutation matrix and D is a full-

‘ ) S1,82 € |[—1,1], 83 € [0, 1]
rank diagonal matrix. D . oL IR %

= R S1 et 52 Find Gen(¥(P)) via graph
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® Si,S9: signed, s3: nonnegative

¢ Random sparse sub-vectors,
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PMPF': Sufficiently Scattered Set

S, is a sufficiently scattered set of P iff ® s1,5s2: mutually sparse

o conv(S,) D Ep where Ep is the maximum ® 59,53 mutually sparse

volume inscribed ellipsoid of P,
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= _ % bd(P) m COHV(Sg) e bd(P) m 573

Brute Force Approach

<

o Let Vp € R™"™ be the vertex matrix of P &€ 51
R™ containing m vertices of P in its columns.

Execution Time (in sec)
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Det-Max Criterion

Det-Max Criterion for Matrix
Factorization

e Algorithm 1
o Let P € R" be polytope with vertex matrix Brute Force
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Let IT € R™*™ denote a permutation matrix.

o Let Q= VpV7T> | A
SAEINT L IS PPN AR PAITY

maximize P is identifiable <= the set

{G : GVp = VpIIL II € R™*™} only con-
tains signed permutation matrices.

subject to
e Construct an edge-colored complete graph Gp

with m nodes where each pair of distinct nodes

. are connected.
Brute force approach requires a search on all

possible permutation matrices. e The edge color from " node to j** node is
given by V?E iQ_le:,j (CntryRaf @, .

It P is an identifiable polytope, and S, is a suffi-
ciently scattered set of P, then any global optimum
(H,, S,) of Det-Max Criterion satisfy

Factorial Complexity !
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e Graph Automorphism Group:
4 (Gp) ={Il € R™*™ . C = II{ CII}

H: D~ T+
IIDS,,

We can exploit the group structure.

e Y(Gp) 2¥9(P) (¥ denotes isomorphism.)




