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Monaural Speech Segregation Systems

Cocktail Party Problem = Computational Auditory Scene Analysis (CASA) = Speech Segregation

Traditional CASA Systems Deep Neural Network Based Models

Harmonicity Model: |Temporal Coherence Model Harmonicity | Temporal Other
* Continuity of * Biologically plausible Coherence
pitch in time e Features of a single source
* Harmonic are modulated
structure * Onset co-incidence and ? ? ?
across timing cues
frequency ® o @

Goal: Bridge the gap between CASA systems and Deep Neural Network

S based speech segregation models
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Investigate the importance of harmonicity for DNN-based speech segregation models

qERSITP

\O‘\

A
RYL?’é

@cussp 2022
Scagapore



Inharmonic Sources

* Inharmonic sounds: components not at integer multiples FO

@) =nfo®) +nfot); —J<n<] (@D

* Inharmonic Tones: .
Xtone = 2 Ag sin(2rf (£)1) (2)
k=1

* Inharmonic sources: | #= 0

I ) mmmmm) nharmonicity 1

RSt Natural speech: ] =0
y :50& Inharmonic Speech: Modified STRAIGHT Algorithm [Kawahara, 2018]
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Experiments
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Experiments

Dataset: WSJO and WSJ-2-Mix

Generate inharmonic versions of WSJO for each jitter: 0.01<J<0.30:
* Average offset for male speakers: +1.2 - +40 Hz
* Average offset for female speakers: £2.1 - £65 Hz

Evaluate Conv-Tasnet and DPT-Net trained on natural (harmonic) speech mixtures with:

* Mixtures of inharmonic tones
* Inharmonic WSJ-2-Mix (inharmonic speech + inharmonic speech)
e Mixtures of inharmonic and natural WSJO (inharmonic speech + natural speech)

* Baseline: Natural WSJ-2-mix (natural speech + natural speech )

Evaluation Metric: Signal-Distortion Ratio (SDR)
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Results
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DNN Models Trained on Natural Speech
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Mixture of Inharmonic Sources

Conv-Tasnet fails to segregate
mixtures of inharmonic tones
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DNN Models Trained on Natural Speech
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Conv-Tasnet can segregate
mixtures of natural speech +
harmonic tones

Conv-Tasnet cannot segregate
mixtures of natural speech +
inharmonic tones

Both sources need to be
harmonic
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DNN Models Trained on Natural Speech
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DNN Models Trained on Natural Speech
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DNN Models Trained on Inharmonic Speech
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The network finds it challenging to learn
to segregate speech

Model performance on natural speech
deteriorates

Harmonicity is critical for segregation
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DNN Models Diverge from Temporal Coherence

* Humans and TC models (Krishnan et al. 2014) group all sources with the
same timing onset and offset as one source, regardless of harmonicity

* Conv-Tasnet can segregate two synchronous, harmonic sources

Mixture Source-1 Estimated Source-2 Estimated
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Conclusion
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Conclusion and Future Work

DNNs cue onto the harmonic structure for segregation

SOTA models completely fail with inharmonic inputs (adversarial inputs)

DNNs implicitly learn the non-trivial task of pitch-tracking

DNNs diverge from biologically inspired CASA models

Next Steps:
* Analysis on spectrogram-based DNN networks

* Investigation on how DNN models perform harmonic analysis
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