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Contribution Relative to Prior Art

» 2D aerial base station (ABS) placement
» Stochastic optimization [Romero et al. 2019]
» Sparse recovery [Huang et al. 2020]

Free-space

»3D ABS placement propagation

» Particle swarm optimization (PSQO)

+ gradient descent Kim et al. 2018]

» Heuristic algorithm Kalantari et al. 2016]

» K-means + game theory ‘Hammouti et al. 2019] Empirical

» PSO Perabathini et al. 2019] channel

= Reinforcement learning Liu et al. 2019] model

» The genetic algorithm 'Shehzad et al. 2021]

= Reinforcement learning Qiu et al. 2020] 3D city

» A geometry-based greedy algorithm [Sabzehali et al. 2021] models
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ontribution: 3D ABS placement
*** Channel-aware - radio tomographic maps
< Convex optimization placement criterion
** Can accommodate no-fly zones
¢ Linear complexity solver
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Assumptions: = Known: A, W, Prx, o = Unlimited backhaul
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Problem Formulation

Minimum rate
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< Given: + Positions of ground terminals .
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s+ Optimization problem:
P The number of ABSs
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Shadowing Maps via Radio Tomography
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Learn a shadowing map Radio tomographic

from measurements model
9 [Patwari et al. 2008] y
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" Piecewise linear
approximation
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proposed
- approximation

* continuous
* can be used with large grid point spacing

* linear complexity O(Q))

N. Patwari and P. Agrawal, “NeSh: A joint shadowing model for links in a multi-hop network,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., Las Vegas, NV, Mar. 2008, pp. 2873—-2876.

Placement with Min-Rate Guarantees

» Proposed approach

minimize N
ABS1V N

7. € RS m-th column of R'

Algorithm 1: ABS Placement

Data: C < RfXG, Tmin € Ry, {wg}g CR4,p>0
1 Initialize U' € R}"*“ and Z' € RY/*¢
2 fork=1,2,...do
3 for g = 1,200 G do

S.t. ZTL Cm(wgBS) Z 'rmin, m — 1,. . .,M,
e F, n=1,...,N.

4 Bisection: find 5'3“ s.t.
T k e oma B
1 My e, DO = Rigio
5 Setr,” =min(2Z,; —at.5," 1)

6 form= 1200000 M do
Bisection: find A s.t.
1" max(0, min(€m, 75, + @k, — A1) = rmn

Region discretization
Fo={zf,...,2f} c FCR®

minimizg ¥, g O = 1, Jan ABS at x 8 Set 25, = max(0, min(ep, 7! + @7, — 1))
— . 1, . +1 _ rpk+1
ae{0,1} 4 0, otherwise . f:tU N U():;IR : gk+1
- = 10 convergence €n return
st D, 0gCe > Tminl,| ¢, = [Cil@ ] )senesCnil@ ] )]"
QgCg — Tg Alternating-direction
I[e] = 1, eistrue method of multipliers
0, otherwise (ADMM)
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E.J. Candes, M.B. Wakin, and S.P. Boyd, “Enhancing sparsity by reweighted |1 minimization,” J. Fourier Analysis App.,

vol. 14, no. 5, pp. 877-905, 2008.

Simulation
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Value

Environment Parameters

Area of interest 500 x 400 m
EX p e rl m e ntS No. streets in each direction 9
No. rows and columns of buildings 8
Height of buildings
Flight height [50; 150] m
Absorption inside the buildings 3 dB/m
Carrier frequency 2.4 GHz
Performance metric: Bandwidth 20 MHz
Mean number of ABSs Transmit power 0.1 Watt
Noise power -96 dBm

Compared algorithms

Authors Approach Reference
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Mean number of ABSs

Tmin = 9 Mb/s,h =53 m,20 x 30 x 5 SLF grid,9 x 9 x 3 fly grid.
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“A distributed mechanism for joint 3D placement and user association in UAV-assisted networks,” in IEEE
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Gradually increasing the number
of ABSs, starting from 1.
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@iChannel-aware ABS placement based on a radio map
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h =53 m,48 x 40 x 5 SLF grid,9 x 9 x 5 fly grid.

Conclusions

* minimize the number of ABSs,

Optimize ABS locations =
e guarantee a minimum rate to all GTs.

Proposed algorithm:
=Discretization + convex relaxation approach = Low complexity
sAccommodates flight constraints, e.g. no-fly zones or buildings.
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Open source simulator: : https://github.com/uiano/abs placement via radio maps
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https://github.com/uiano/abs_placement_via_radio_maps

