Aerial Base Station Placement Leveraging Radio Tomographic Maps

 2D aerial base station (ABS) placeme Stochastic optimization Sparse recovery 	ent [Romero et al. 2019] [Huang et al. 2020]		
 >3D ABS placement Particle swarm optimization (PSO) + gradient descent Heuristic algorithm K-means + game theory PSO Reinforcement learning The genetic algorithm Reinforcement learning A geometry-based greedy algorithm 	[Kim et al. 2018] [Kalantari et al. 2016] [Hammouti et al. 2019] [Perabathini et al. 2019] [Liu et al. 2019] [Shehzad et al. 2021] [Qiu et al. 2020]		
Contribution: 3D ABS placement			
Communication Model			
Channel gain: $\gamma_m(\boldsymbol{x}^{ABS}) = 20 \log_{10}$ ABS position $\boldsymbol{x}^{ABS} \in \mathcal{F} \subset \mathbb{R}^3$	$egin{pmatrix} \lambda \ \overline{4\pi \ m{x}_m^{ ext{GT}}-m{x}^{ ext{ABS}}\ } \ \end{pmatrix} - \xi(m{x}_m^{ ext{GT}}, m{x}_m^{ ext{GT}}, m{x}_m^{ ext{GT}}, m{x}_m^{ ext{GT}}, m{x}_m^{ ext{GT}}, m{x}_m^{ ext{GT}} \ \end{pmatrix}$		
$\Box \text{ Capacity:} C_m(\boldsymbol{x}^{\text{ABS}}) = W \log_2 \left(Bandwidth \right)$	$\left(1 + P_{\text{TX}} 10^{\gamma_m (\boldsymbol{x}^{\text{ABS}})/10} / \sigma^2\right)$ Fransmit power Noise power		

Daniel Romero¹, Pham Q. Viet¹, and Geert Leus² ¹ Dept. of Information and Communication Technology, University of Agder, Grimstad, Norway ² Dept. of Microelectronics, Delft University of Technology,

Simulation Experiments

Performance metric: Mean number of ABSs

Compared algorithms		
Authors	Approach	Refer
1. Huang et al.	Based on a maximum radius	"UAV-r
2. Galkin et al.	Gradually increasing the number of ABSs, starting from 1.	"Deplo Wirele
3. Lyu et al.	Based on a maximum radius	"Placei 607, 20
4. Hammouti et al.	Gradually increasing the number of ABSs, starting from 1.	"A dist Wirele

17 TUNIVERSITY OF Technology

Environment Parameters	Value
Area of interest	500 x 400 m
No. streets in each direction	9
No. rows and columns of buildings	8
Height of buildings	
Flight height	[50; 150] m
Absorption inside the buildings	3 dB/m
Carrier frequency	2.4 GHz
Bandwidth	20 MHz
Transmit power	0.1 Watt
Noise power	-96 dBm

rence

rs. IEEE, 2016, pp. 1–6

ment optimization of UAV-mounted mobile base stations," IEEE Commun. Letters, vol. 21, no. 3, pp. 604–

ibuted mechanism for joint 3D placement and user association in UAV-assisted networks," in IEEE ss Commun. Netw. Conf., Marrakech, Morocco, Apr. 2019.

- minimize the number of ABSs,
- guarantee a minimum rate to all GTs.

```
•Discretization + convex relaxation approach \rightarrow Low complexity
Accommodates flight constraints, e.g. no-fly zones or buildings.
```

4 Open source simulator: : <u>https://github.com/uiano/abs_placement_via_radio_maps</u>