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Introduction

In wearable sensing applications, data is inevitable to be
irregularly sampled or partially missing, which pose
challenges for any downstream application.
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An unigque aspect of wearable data is that it is time-series
data and each channel can be correlated to another one,
such as x, vy, z axis of accelerometer.

We argue that traditional methods have rarely made use
of both times-series dynamics of the data as well as the
relatedness of the features from different sensors. We
propose a model, termed as Dynlimp, to handle different
time point’s missingness with nearest neighbors along
feature axis and then feeding the data into a LSTM-based
denoising autoencoder which can reconstruct missingness
along the time axis.

Model pipeline

LSTM-based

Methodology

Denoising LSTM-based Autoencoder has two parts,
where first it will encode the input to an encoded space
and the decoder will reconstruct it back to the original
signal.
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parameters

Padding in a KNN format can help to recover the nearest
neighbors’ feature space, where we have the hidden
layer’s function:

h(xD) =g [W’ - ((Mt O xW) + P) + b]
where the M! is our masking matrix that and P is our
padding matrix

0 ifi=m,t =1
Mt =1 '
(m.1) {1 otherwise

where m and [ are the indicator indices of the masking
matrix at i-th data entry at t-th time point
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pt — ]k if jin top k neigbhors of i,
0 otherwise

where i is index of interest and j is selected if it’s in top k
neighbors of i

Prediction Results

* We experiment the model on the extreme missingness
scenario (> 50% missing rate) which has not been widely
testedin wearable data.

* We incorporated strong baselines that include both
traditional methods as well as deep model

e OQur experiments on activity recognition (UCSD
ExtraSensory dataset)show that the method can exploit
the multi-modality featuresfrom related sensors and also
learn from history time-seriesdynamics to reconstruct the
data under extreme missingness, and thus outperforms

the baselines
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Conclusion

we proposed a dynamic imputation technique for remote
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