
FILTERBANK LEARNING USING CONVOLUTIONAL RESTRICTED BOLTZMANN MACHINE FOR SPEECH RECOGNITION
Hardik B. Sailor and Hemant A. Patil

Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar-382007
{hardik_sailor, hemant_patil}@daiict.ac.in

INTRODUCTION

• Human auditory processing→ design features

• Representation learning to discover features

• Unsupervised learning to learn filterbanks

• Convolutional models avoid block-based processing

• Convolutional RBM to learn filterbanks directly from speech
signals

CONVOLUTIONAL RBM FOR SPEECH SIGNALS

• ConvRBM has two layers: visible layer and hidden layer [1],
[2].

• The input to ConvRBM is an entire speech signal of length
n-samples.

• Hidden layer consists of K-groups (i.e., number of filters)
with filter length m-samples in each.

• Weights (also called as subband filters) are shared between
visible and hidden units [1].

• The response of the convolution layer is given as:

Ik = (x ∗ w̃k) + bk, (1)

where x = [x1, x2, ..., xn] are samples of speech signal, wk =
[wk

1 , w
k
2 , ..., w

k
m] is a weight vector and w̃ denote flipped array.

• The energy function for ConvRBM is given as,
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where convolution length l = n−m+ 1, σx = 1 and c is a shared
visible bias.

• Hidden units are sampled using noisy ReLUs as done in [3].

• Single-step contrastive divergence for model learning.

• Following are the sampling equations for hidden and visible
units (to reconstruct speech signal xrecon):

hk ∼ max(0, Ik +N(0, σ(Ik))),

xrecon ∼ N
(∑

k
(hk ∗ wk) + c, 1

)
,

(3)

where N(0, σ(Ik)) is a Gaussian noise with mean-zero and sig-
moid of Ik as a variance andN (µ, 1) is Gaussian distribution with
mean µ and variance 1.

FEATURE REPRESENTATION

• Pooling is applied to reduce representation of ConvRBM fil-
ter responses in temporal-domain.

• Pooling is performed across time and separately for each fil-
ter using 25 ms window length (wl) and 10 ms shift (ws).

• Logarithmic non-linearity compresses the dynamic range of
features.

ACKNOWLEDGEMENTS

The authors would like to thank Dept. of Electronics and In-
formation Technology (DeitY), Govt. of India for sponsoring two
consortium projects, (1) TTS Phase II (2) ASR Phase II and au-
thorities of DA-IICT, Gandhinagar, India. Presented by Hardik B. Sailor in 41st IEEE International Conference on Acous- tic, Speech and Signal Processing (ICASSP) 20-25 March 2016, Shanghai, China.

Convolution Layer

K filters

Pooling

25 ms window length

10 ms window shift 

Log(·+0.0001)

ReLU

Activation 

Speech signal

Features

��� �

��� �

��� �

��� �

��� �

���

���

���

���

���

Fig. 1 Block diagram of stages in feature representation using trained Con-
vRBM. To shows figures on right side, filters were arranged in increasing
order of center frequency. (a) speech signal, (b) and (c) responses from
convolution layer and ReLU nonlinearity, respectively, (d) pooling operation,
(e) logarithmic compression.

• The feature extraction steps involved in this ordering resem-
bles the auditory processing in human ear [4].

ANALYSIS OF FILTERBANK

• Weights of ConvRBM were initialized randomly and there is
no constraint on filter shapes.

• Many filters are very similar to auditory gammatone filters.

• Filters with lower center frequencies are highly localized in
frequency-domain while filters with higher center frequen-
cies are more broad in terms of bandwidth.

• Mimic the human perception for hearing.
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Fig. 2 Examples of subband filters learned using ConvRBM: (a) filters in
time-domain (i.e., impulse responses), (b) filters in frequency-domain (i.e., fre-
quency responses).

• Our model can also accurately reconstruct speech signal even
after ReLU non-linearity.
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Fig. 3 (a) Segment of speech, (b) reconstructed from model, (c) residual error.
Root Mean Squared Error (RMSE) between original and reconstructed speech
is 0.0453.

COMPARISON WITH STANDARD FILTERBANKS
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Fig. 4 Comparison of filterbank learned using ConvRBM with auditory filter-
banks.

• nonlinear relationship between center frequencies and filter
ordering (and hence, bandwidth of filters) similar as other
auditory filterbanks.

• More number of subband filters are required for lower fre-
quencies compared to higher frequencies.

• Learned filters can represent frequency tuning in human
cochlea.
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Fig. 5 (a) Speech signal, (b) spectrogram using ConvRBM filterbank, (c) log-
Mel spectrogram.

• ConvRBM spectrogram indeed represent spectrum informa-
tion such as formant contours, voiced and unvoiced sounds.

EXPERIMENTAL SETUP

• Speech recognition experiments were conducted on TIMIT
[5] (for phone recognition task) and Wall Street Journal WSJ0
database [6].

Training of ConvRBM and Feature Extraction

• Mean-variance normalized speech signals were applied to
ConvRBM.

• Learning rate was chosen to be 0.005 which was fixed for first
10 epochs and decayed later.

• For first five training epochs, momentum was set to 0.5 and
after that it was set to 0.9.

ASR System Building

• Baseline monophone GMM-HMM and hybrid DNN-HMM
system systems were built using 39-D MFCC and 120-D Mel
filterbank features features.

• Results are reported on GMM-HMM and hybrid DNN-
HMM systems with parameters: 3 hidden layers, 1500 hid-
den units and 11 frame context-window.

EXPERIMENTAL RESULTS

Table 1: ConvRBM parameter tuning on TIMIT database in % PER
No. of filters Filter length Pooling type Dev Test

40 128 Avg 32.0 32.6
60 128 Avg 31.2 31.8
80 128 Avg 31.5 31.9
60 96 Avg 31.4 32.5
60 160 Avg 31.7 33.0
60 256 Avg 32.8 33.5
60 128 Max 32.6 33.5

Avg=Average, Max=Maximum

• Filter length 128 samples, i.e., 8 ms is sufficient to capture
small temporal variations in speech signals.

Table 2: Results on TIMIT database in % PER
Feature set System Dev Test

MFCC (39-D) GMM-HMM 32.7 33.5
ConvRBM (39-D) GMM-HMM 31.2 31.8

MFCC (39-D) DNN-HMM 23.0 24.0
ConvRBM (39-D) DNN-HMM 21.9 23.3
FBANK (120-D) DNN-HMM 22.2 23.4

ConvRBM-filterbank (120-D) DNN-HMM 21.5 22.8

• Relative improvement of 3% on TIMIT test set over MFCC
and Mel filterbank (FBANK).

Table 3: Results on WSJ0 database in % WER
Feature set System eval92_5K eval92_20K

MFCC(39-D) GMM-HMM 13.95 27.72
ConvRBM(39-D) GMM-HMM 12.96 25.80

MFCC(39-D) DNN-HMM 6.30 15.70
ConvRBM(39-D) DNN-HMM 6.05 13.40
FBANK (120-D) DNN-HMM 6.07 14.32

ConvRBM-filterbank(120-D) DNN-HMM 5.85 13.52

• Relative improvement of 4-14% using ConvRBM features
over MFCC features and 3.6-5.6% using ConvRBM filterbank
over FBANK features.
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