

MirrorNet : Learning Audio Synthesizer Controls Inspired by Sensorimotor Interactions

Background

- \blacktriangleright Existence of bidirectional flow of interactions between the motor regions
- Learning complex sensorimotor mappings proceeds simult often in an unsupervised manner by listening and speaking [1,2,3]
- Finspired by such learning of complex sensorimotor tasks, a autoencoder architecture has been proposed to model this m and is referred to as the "Mirror Network" (or MirrorNet) b al. [1]
- \blacktriangleright The essence of this biologically motivated algorithm is the flow of interactions ('forward' and 'inverse' mappings) betw auditory and motor responsive regions, coupled to the const imposed simultaneously by the actual motor plant to be con
- We used the the MirrorNet architecture to learn controls/p a commercial and a widely available synthesizer (DIVA) in unsupervised fashion

MirrorNet Model Architecture

- **Goal of the model**: To learn two neural projections, an inve from auditory representation to motor parameters (Encoder) forward mapping from the motor parameters to the auditory representation (Decoder)
- Encoder and Decoder optimized simultaneously with two lo namely the 'encoder loss'(e_{c}) and the 'decoder loss'(e_{d})
- The role of the 'forward' path is to back-propagate the error inverse mapping that is used to estimate the control parameter

Figure 1: Autoencoder Architecture

Figure 2: Role of the F

atch Norm. ReL

Upsample

Group Norm

Deep Neural Network (DNN) Architecture

Yashish M. Siriwardena¹, Guilhem Marion², Shihab Shamma^{1,2}

¹Institute for Systems Research, University of Maryland College Park, USA ²Laboratoire des Systèmes Perceptifs, École Normale Supérieure, PSL University, France

	DIVA control Parameters	
e auditory and	Parameter Name	DIVA pre
	MIDI note (Pitch)	-
taneously and	MIDI duration	-
all at once	Volume	OSC : Vo
un ut once	Filter(center frequency BPF)	VCF1: Fi
	Filter Resonance	VCF1: R
a liew	Envelope Attack	ENV1: A
w Shamma of	Envelope Decay	ENV1: D
y Shanna et	Vibrato Rate	LFO1: R
e bidirectional ween the traints	Vibrato Intensity	OSC : Vi
	Vibrato Phase	LFO1: P
	MirrorNet predicts the first 7 param	neters in
ntrolled.	Experiments	
a completely	Experiment 1: Learning DIVA par with DIVA (set1)	ameters
	 400 melodies to train the MirrorNet origi 	
	using the first 7 parameters in Ta	ble
erse mapping and a	• Availability of ground-truth para	meters te
	predictions	
	Auditory spectrograms	
oss functions	a) Input Melody b) Decoder Output fi	rom grou
	c) Final output from Decoder d) DIV	A output
	(a)	L
r to learn the	후 ⁴⁰⁰⁰⁻	4000-
ers		
		1000-
ble to learn the Inverse		-
Cortex	125 0 0.4 0.8 1.2 1.6	125 - 0
ugh the Forward projection	(C)	1000-
OCAL TRACT Auditory		+000-
orward Cortex		1000
		1000-
orward Pass		125
	0.4 0.8 1.2 1.6 Time (s)	0
	Experiment 2: Learning DIVA par	ameters
DIVA output	with extra unknown DIVA paramete	ers (set 2
g module	 400 melodies to train the MirrorNet orig 	
C12	using all the 10 parameters in Table	
	• Mirror Not is still trained to prod:	ict 7 cor

- experiment
- Evaluates how the well MirrorNet can approximate the input melodies even if they have additional sound/musical qualities, eg. Vibrato

Auditory spectrograms a)Input Melody eset b)DIVA output from learned control parameters olume2 requency esonance generated from a different syntheszier ttack ecay ate ibrato sources and synthesizers hase Table (shaded in yellow) trough Kontakt 5) for melodies synthesized piano music from unseen samples Auditory spectrograms inally synthesized by DIVA 4000 N c) Input Melody d) DIVA output from 1000 to assess the MirroNet learned control parameters 125 ind-truth parameters Summary from learned control parameters of vocal tract controls required 'inverse' and 'forward' mappings 0.8 1.2 1.6 0.4 (d) 1.2 0.8 1.6 0.4 Time (s) set of parameters of a given synthesizer for melodies synthesized Acknowledgments ginally synthesized by DIVA cameters as in previous References

[1] Shihab Shamma, Prachi Patel, Shoutik Mukherjee, Guilhem Marion, Bahar Khalighinejad, Cong Han, Jose Herrero, Stephan Bickel, Ashesh Mehta, and Nima Mesgarani, "Learning Speech Production and Perception through Sensorimotor Interactions," Cerebral Cortex Communications, vol. 2, no. 1,2020. [2] Silvia Pagliarini, Arthur Leblois, and Xavier Hinaut, "Canary Vocal Sensorimotor Model with RNN Decoder and Low-dimensional GAN Generator," in 2021 IEEE International Conference on Development and Learning (ICDL), 2021, pp.1–8 [3] Patricia K. Kuhl, "Early language acquisition: cracking the speech code," Nature Reviews Neuroscience, vol. 5, pp. 831–843, 2004.

Paper #4418

Experiment 3: Learning DIVA parameters to synthesize melodies

Laboratoire des

Systèmes

Perceptifs

• Fundamental advantage of the MirrorNet is its ability to discover the DIVA parameters corresponding to music generated by other

• 400 5-notes long piano melodies of 2 seconds that are synthesized by a Fender Rhodes digital imitation (Neo-Soul Keys generated

• Trained Network successfully reproduces accurate renditions of the

> Bidirectional sensorimotor projections enable **unsupervised learning**

An autoencoder architecture with a constrained latent space can be used to simulate the sensorimotor learning algorithm to learn the

MirrorNet can accurately estimate control parameters for an off-theshelf audio/music synthesizer to synthesize a given input melody -Learning audio synthesizer controls to synthesize an input melody of notes originally synthesized by the same set of parameters -Approximating an input melody of notes with different sound qualities (or synthesized by a different synthesizer) using a limited

This work was supported by Advanced ERC Grant NEUME 787836 and Air Force Office of Scientific Research and National Science Foundation grants to S.A.S.; and FrontCog Grant ANR-17-EURE-0017, PSL Idex ANR-10-IDEX-0001-02, and a PhD scholarship from the Research Chair on Beauty Studies PSL L'Oréal to G.M.