To Catch a Chorus, Verse, Intro, or Anything Else: **Analyzing a Song with Structural Functions**

Ju-Chiang Wang*, Amy Hung, and Jordan B. L. Smith Speech, Audio and Music intelligence (SAMI) team, TikTok, ByteDance

ju-chiang.wang@bytedance.com

Introduction

- Music Structure Analysis (MSA) has many subtasks:
 - *Boundary detection*: partition into non-overlapping segments
 - Segment labeling: assign abstract labels to segments (e.g., ABCB...)
 - Function labeling: assign meaningful labels (e.g., "intro, verse, chorus, verse...")
- Semantic labeling is hard, and rarely attempted!
 - Last effort was over a decade ago (Paulus 2010)
 - Has many applications, including: preview extraction (chorus) detection); automatic remix; real-time MSA (e.g., for live concert).

Experiments

- **Datasets**: HarmonixSet, SALAMI-pop, RWC, and Isophonics.
- **Data split**: 8-Fold Cross-Validation
- Evaluation metrics:
 - General structure
 - Boundary) HR.5F, (Function) ACC, (MSA) PWF, (MSA) Sf
 - Chorus detection
 - (boundary) CHR.5F, (accuracy) CF1

• Our contributions:

Boundary Curve

& Prediction

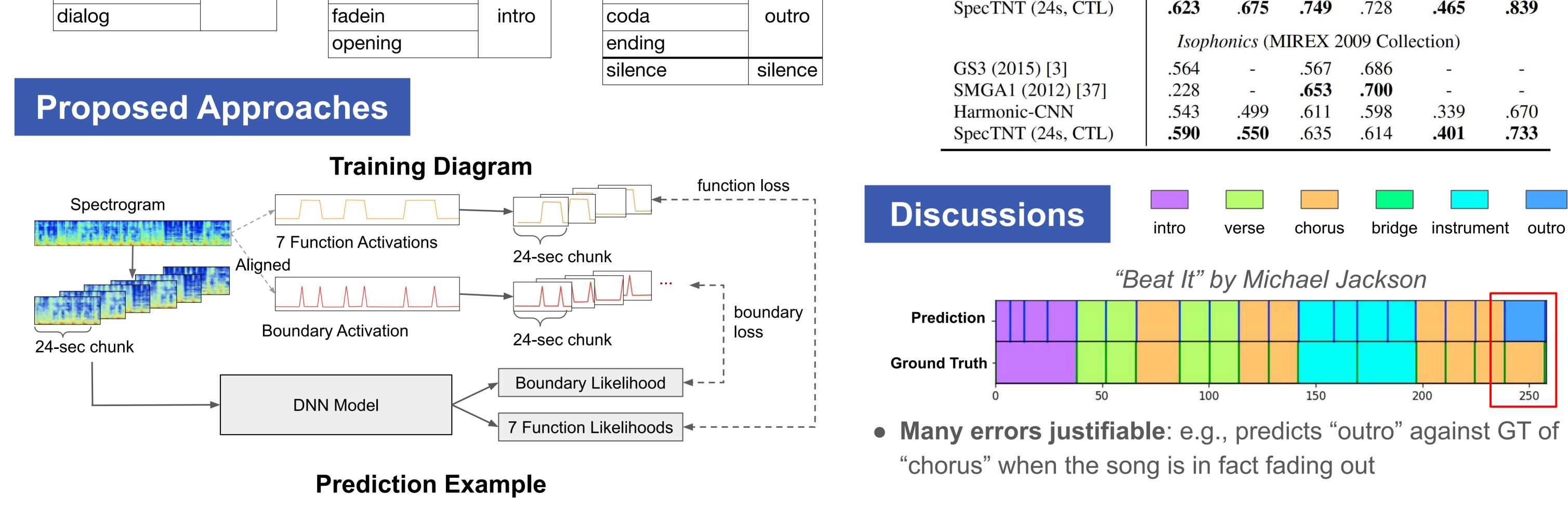
- Method to process datasets with disparate, free-form vocabulary into **simple taxonomy** of 7 section categories;
- Method for predicting section types that is **content-based**: measures "verseness", "chorusness", "bridgeness," etc., independent of context.

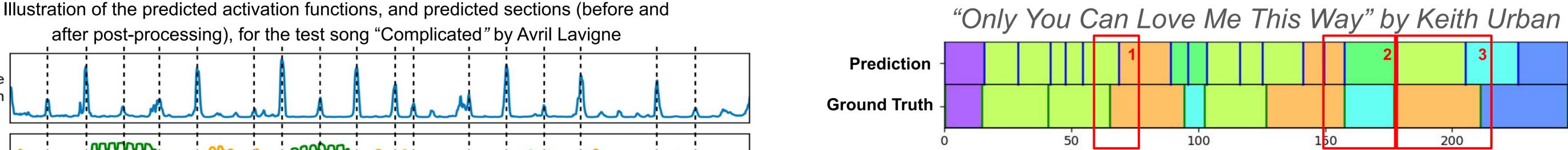
Structural Label Conversion

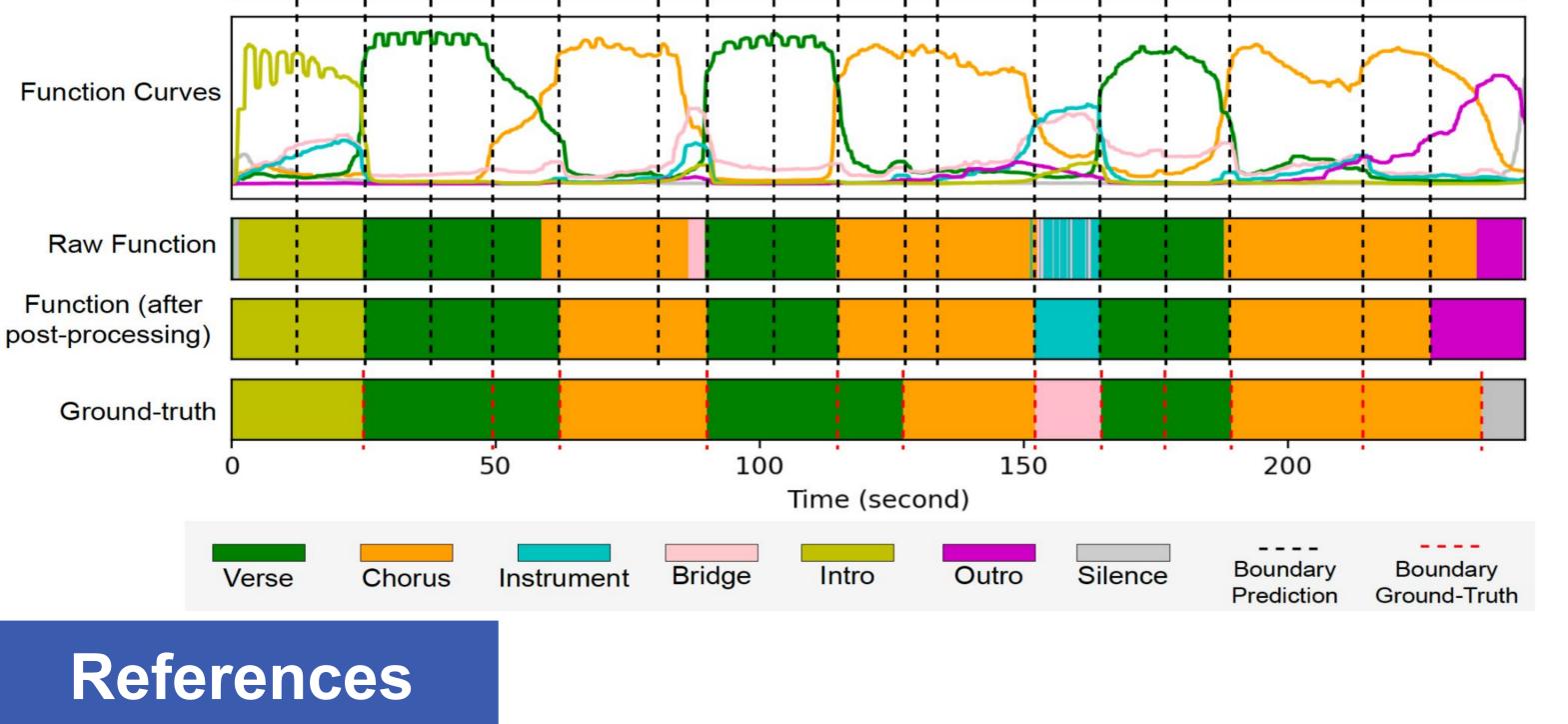
• Algorithm: convert the input substrings into the corresponding 7 categories: "intro", "verse", "chorus", "bridge", "outro", "inst" (instrumental), "silence"

• The substring mapping can cover 99.5% of raw labels

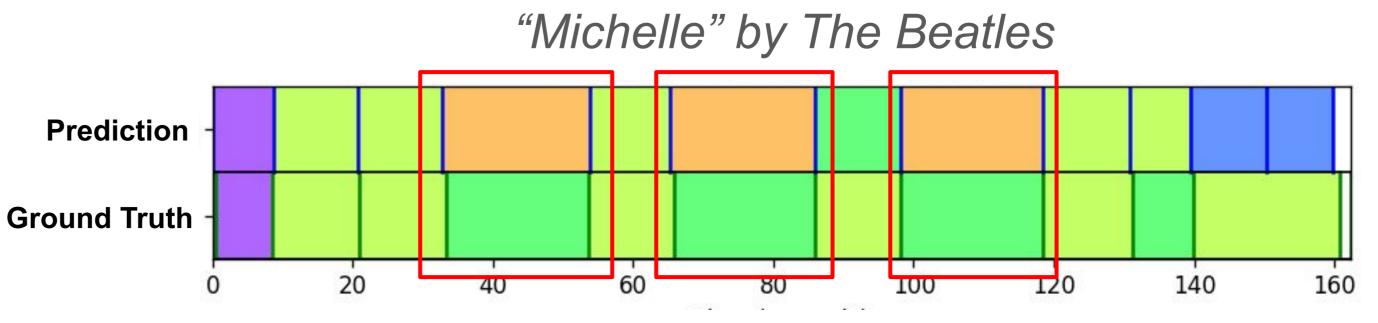
input substring	output	input substring	output	
pre-chorus		refrain		
prechorus		chorus	oboruo	
verse	refrain chorus theme stutter bridge	theme	chorus	
rap		stutter	-	
section		bridge		
slow		trans	bridge	
build			intro	


t	input substring	output			
	break				
C	inst				
S	interlude	inst			
	impro	1151			
	solo				
Э	guitar				
	out				


HarmonixSet 4-Fold Cr	oss-Validation
-----------------------	----------------


	HR.5F	ACC	PWF	Sf	CHR.5F	CF1	
Harmonix Set							
Scluster [1]	.263	-	.586	.641	.171	.534	
DSF + Scluster [35]	.497	-	.689	.743	.326	.611	
CNN-Chorus [13]	-	-	-	-	.371	.692	
Harmonic-CNN	.559	.680	.670	.682	.462	.784	
Transformer (24s, CTL)	.521	.640	.655	.649	.399	.755	
SpecTNT (24s)	.565	.690	.687	.702	.491	.813	
SpecTNT (24s, CTL)	.570	.701	.700	.714	.501	.815	
SpecTNT (36s, CTL)	.558	.723	.712	.724	.476	.831	

Cross-Dataset Evaluation


	HR.5F	ACC	PWF	Sf	CHR.5F	CF1	
	SALAMI-pop (subset of MIREX 2012 dataset)						
Scluster [1]	.305	×	.545	.572	.196	.418	
DSF + Scluster [35]	.447	-	.615	.653	.272	.573	
CNN-Chorus [13]	-	-	-	-	.308	.602	
Harmonic-CNN	.477	.525	.631	.629	.340	.777	
SpecTNT (24s, CTL)	.490	.544	.651	.632	.357	.811	
	RWC-Pop (MIREX 2010 RWC collection)						
GS3 (2015) [3]	.524	-	.542	.684	-	_	
SMGA2 (2012) [37]	.246	_	.688	.733	-	_	
DSF + Scluster [35]	.438	-	.704	.739	.343	.653	
Harmonic-CNN	.571	.646	.719	.694	.396	.800	
SpecTNT (24s CTL)	623	675	749	728	465	839	

1. Estimated chorus onsets not correct due to anacrusis (pickup) 2. Model got confused between "break (instrument)" and "bridge". 3. Model recognized the "(breakdown) chorus" as "verse".

Some songs have no annotated "chorus" sections; instead,

"verses" alternate with "bridge" sections.

- Comprehensive survey: O. Nieto et al., "Audio-Based Music Structure Analysis: Current Trends, Open Challenges, and Applications", TISMIR, 2020.
- J. Paulus, "Improving Markov Model-Based Music Piece Structure Labeling with Acoustic Information", in Proceedings of ISMIR, pp. 303–308, 2010.
- With apologies to M. Bartsch and G. Wakefield, To Catch A Chorus: Using Chroma-Based Representations for Audio Thumbnailing, in Proceedings of IEEE WASPAA, pp. 15–18, 2001.