
•A short-term solution to bridge the gap between advances in quantum

computing and quantum communication networks by leveraging the existing

classical networks.

• Lead to the development of hybrid networks with both classical users and

quantum users with purely-quantum data.

• Quantum cryptographic techniques can be utilized to add an extra layer of

security for the QFL setup, e.g., integration with quantum key distribution.

• Developing interfaces between different quantum technologies would advance

the QFL framework towards incorporating both classical and quantum networks.

SCIENTIFIC INSIGHTS and FUTURE OUTLOOK

• Includes three major areas:

❑ Quantum-assisted classical ML.

❑ Hybrid quantum-classical ML.

❑ Purely-quantum QML.

• Parametrized quantum circuits with tunable classical parameters.

•Purely-quantum QML models are necessary for quantum many-body systems

that have a complex, exponentially large Hilbert spaces, which usually have

intractable theoretical analysis.

• Quantum convolutional neural networks (QCNN) for classification tasks.

o A sequence of quantum convolutional layers (unitary quantum gates), followed

by quantum pooling layers (reduce size by quantum measurements), and end

with a quantum fully-connected layer.

QUANTUM MACHINE LEARNING

• Investigation of the federated learning setup for sharing a quantum machine

learning (QML) task between quantum clients with purely-quantum data.

• Analysis of the potential to integrate existing classical communication networks

instead of quantum networks in the quantum federated learning (QFL) setup.

• Addressing the practical implementation-related limitations rendering the wide-

spread adoption of distributed quantum learning frameworks.

• Generating the first quantum federated dataset in the literature, which is necessary

for future advances in the field.

GOALS and OBJECTIVES

CHALLENGES & MOTIVATION

• Prior work mainly focused on centralized QML models, not distributed learning.

• None of the existing works that consider FL scenarios with QML models rely on

purely-quantum data, and there is not quantum federated dataset in the literature.

• Advances in quantum computing technologies happen at a much faster pace

compared to advances in quantum communication networks, which are still lossy

and unreliable for the transmission of quantum data.
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• Each client has labeled input pairs ( ۧ|𝜓𝑚 , 𝑦𝑚): 𝑚 = 1,2, … ,𝑀, where ۧ|𝜓𝑚 is 

the m-th sample quantum state, 𝑦𝑚 is the m-th binary label (cluster state 

excited or not), and 𝑀 is the number of data samples.

• All 𝐾 clients share the same QCNN model.

• The QCNN parameters 𝜽𝒌 are classical values that can be sent using existing 

classical communication networks.

• Each client trains its QCNN model 𝑓 by minimizing MSE loss function: 

• Each round ℎ of the server applies federated averaging to aggregate and update 

the parameters for all users. 
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Quantum Data:

excitations of N-

qubits quantum

cluster states

• What is the impact of the number of clients on the achieved testing accuracy?

• What is the impact of the size of the datasets of the clients on the achieved

testing accuracy?

SAMPLE RESULT: ENTANGLEMENT RATE OPTIMIZATION

• Used TensorFlow Quantum (TFQ) and Google’s quantum circuit

programming: Cirq to generate single-client data.

• Data: excitations of quantum cluster states represented by Rx rotations.

o If large-enough rotation is achieved label = 1.

o If rotation is not sufficiently large label = 0.

• For each client, the inputs are quantum circuits.

• To store the data: transform into a tensor represented by strings.

• The strings represent an encoding of the serialized binary data of quantum 

circuits (TensorFlow data type: “1S5000”).

• We generated a hierarchical data format version 5 (HDF5) federated dataset 

with different numbers of clients

• Each client has M labeled serialized binary data for a single feature.

QUANTUM FEDERATED DATASET GENERATION
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