ICASSP 2022 DEEP NOISE SUPPRESSION CHALLENGE

<u>Hari</u>shchandra <u>Dubey</u>, Vishak Gopal, Ross Cutler, Ashkan Aazami, Sergiy Matusevych, Sebastian Braun, Sefik Emre Eskimez, Manthan Thakker, Takuya Yoshioka, Hannes Gamper, Robert Aichner

Paper ID: 9406

May 7-13, 2022, Virtual

May 22-27, 2022, In-Person

Motivation

- 4th DNS challenge
- Current DNS still far from achieving superior speech quality (DSIG >=0)
- Previous challenge results showed DSIG <0 with noticeable Word accuracy (WAcc) degradation resulting from over-suppression of noise/speech distortions

What is New?

- Full-band 48kHz recordings
- Baseline model for Personalized DNS track
- Blind testset containing mobile device scenarios
- <u>WAcc</u> is new objective metric
- Final score defined as average of WAcc and P.835 SIG, BAK, and OVRL
- Opensource DNSMOS P.835 and WAcc APIs

ICASSP 2022 Challenge Tracks

Track 1: Real-Time non-personalized DNS for full band speech

The noise suppressor must take less than the stride time Ts (in ms) to process a <u>frame of size T (in ms)</u> on an Intel Core i5 quad-core machine clocked at 2.4 GHz or equivalent processors. E.g., Ts = T/2 for 50% overlap between frames. The <u>total algorithmic latency allowed</u> including the frame size T, stride time Ts, and any lookahead must be <= 40ms. If a real-time system has a frame length of 20ms with a stride of 10ms, it results in an algorithmic latency of 30ms, and thus the latency requirements are satisfied. If a frame size of 32ms with a stride of 16ms is used, resulting in an algorithmic latency of 48ms, then the latency requirements are not met as the total algorithmic latency exceeds 40ms. If the <u>frame size (T) plus stride (Ts) represented as T1 = T+Ts</u> is less than 40ms, then up to (40 - T1) ms of future information can be used.

Track 2: Real-Time Personalized DNS for full band speech

- Satisfy Track 1 requirements.
- 2.5 minutes of clean speech for enrollment of each unique target speaker in the test set is provided for adopting DNS/speaker embedding extractor for personalized denoising. This track has a separate dev test set and blind test set.

Training Datasets

	Clean Speech (read speech, singing speech, emotional speech, and non-English speech)	Noise	Room Impulse Responses (RIR)
Source	Librivox, VocalSet, CREMA-D (Emotional data), Non-English clips from OpenSLR18, THCHS-30, OpenSLR33, AISHELL, OpenSLR39, OpenSLR61, OpenSLR71, OpenSLR73, OpenSLR74 and OpenSLR75, Spoken Wikipedia Corpora, German Corpus for Kinect, M-AILABS	Audioset, freesound and DEMAND database	3076 real and 115000 synthetic RIRs, OpenSLR26 and OpenSLR28
Size	760 hours	181 hours	
Synthesizer default config	SNR range = -5 to 25 dB Target levels = -35 to -15 dB FS		

Blind Testset

- Common blind test set for both tracks helps elucidate the benefits of personalized denoising.
- Enrollment: 2.5 minutes of clean speech
- Only English language
- Contains 859 real test clips, each 10s duration.
- Collected on various desktop (30%) and mobile (70%) platforms using mTurk.
- Several iterations of data validation based on unit tests and human listening.
- Each testclips have a unique speaker and background noise type.
- Transcribed the blind test set using a third-party data annotation service. To ensure high accuracy, expert listening was conducted to correct the speech transcription.

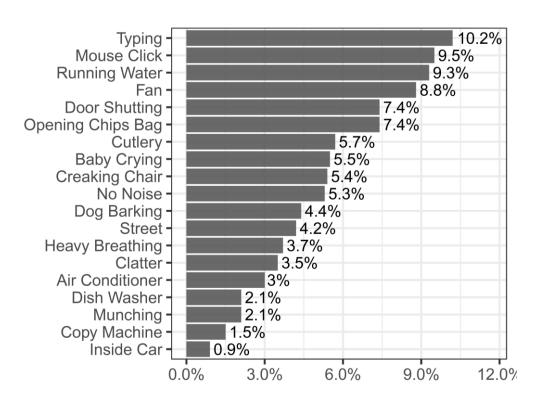


Fig. Distribution of noise types in our blind test set.

ITU-T P.835 framework for Subjective Evaluation

- P.835 provides three scores for each audio clips for overall speech quality (OVL), standalone quality scores of speech (SIG) and noise (BAK).
- Standalone ratings aim to narrow down areas of improvement to achieve better overall speech quality. It enables prioritizing speech quality (SIG) over suppression of background noise (BAK).
- Each test clip was rated by 5 qualified raters, which gave the maximum 95% CI of 0.05 DMOS per model
- Participants ranked based on <u>Final Score</u> given it satisfy real-time requirements. Participants are required to submit the <u>number of operations per second</u> of their model. This could be used as a tie-breaker.

Track 1 Non-PDNS Subjective Evaluation

	SIG		BAK		OVRL					
Model	MOS	dMOS	MOS	dMOS	MOS	dMOS	CI	WAcc	dWAcc	Final Score
Team2_Baidu	4.30	0.01	4.70	2.55	4.13	1.50	0.03	0.70	-0.02	0.74
Team14_Alibaba_NTU	4.26	-0.03	4.27	2.12	3.89	1.26	0.03	0.69	-0.03	0.70
Team19_SRCBSL	4.20	-0.09	4.27	2.12	3.86	1.22	0.03	0.67	-0.04	0.69
Team41_Harbin	4.10	-0.19	4.46	2.31	3.85	1.22	0.03	0.67	-0.04	0.69
Team25_CMRI_BJTU	4.01	-0.28	4.55	2.40	3.81	1.18	0.04	0.65	-0.06	0.68
Team15_PCG-AIID	4.04	-0.25	4.43	2.28	3.75	1.12	0.04	0.65	-0.06	0.67
Team46_Intel_Russia	4.03	-0.26	4.24	2.09	3.68	1.05	0.03	0.67	-0.04	0.67
Team45_Tencent-cSENN	4.00	-0.29	4.21	2.06	3.65	1.02	0.03	0.67	-0.05	0.67
Team7_FP_AUDIO	3.99	-0.30	4.19	2.04	3.61	0.98	0.04	0.68	-0.04	0.67
Team3_Nanjing_NJUAALab	3.97	-0.32	4.42	2.27	3.72	1.09	0.04	0.65	-0.07	0.66
Team29_Kuaishou	3.97	-0.32	4.25	2.10	3.61	0.98	0.04	0.68	-0.04	0.66
Team11_CUC_GHZU	3.86	-0.43	4.47	2.32	3.66	1.03	0.03	0.65	-0.07	0.66
Team37_MITC	3.97	-0.32	4.22	2.07	3.60	0.97	0.04	0.65	-0.07	0.65
Team22_ZMAUDIO	4.12	-0.17	3.65	1.50	3.46	0.83	0.03	0.67	-0.05	0.64
Team33_doreso	3.98	-0.31	3.78	1.63	3.46	0.83	0.03	0.66	-0.05	0.64
Team47_Felix	3.84	-0.45	3.86	1.71	3.35	0.72	0.04	0.67	-0.04	0.63
Team16_NextG-CrystalSound	3.71	-0.58	4.22	2.07	3.46	0.83	0.04	0.62	-0.10	0.62
Team35_QQteam_Tencent	3.74	-0.55	4.07	1.92	3.38	0.75	0.03	0.63	-0.09	0.61
Team54_Tencent_TeaLab	3.72	-0.57	4.02	1.87	3.36	0.73	0.04	0.64	-0.08	0.61
Baseline	3.62	-0.67	3.93	1.78	3.26	0.63	0.04	0.63	-0.09	0.60
Team49_Kuaiyu	3.61	-0.68	4.09	1.94	3.32	0.69	0.04	0.62	-0.09	0.60
Team39_CQUPT-LIU	3.95	-0.34	3.31	1.16	3.16	0.53	0.03	0.64	-0.07	0.59
Team52_Leibus-SE	3.90	-0.39	3.05	0.90	3.00	0.37	0.03	0.68	-0.04	0.59
Noisy	4.29	0.00	2.15	0.00	2.63	0.00	0.03	0.72	0.00	0.56
Team31_BUCEA	4.03	-0.26	3.71	1.56	3.43	0.80	0.03	0.02	-0.69	0.32
Team51_Alango	2.05	-2.24	3.59	1.44	1.90	-0.73	0.03	0.02	-0.69	0.12

Track 1: 24 submissions

Final score = 0.5[WAcc + 0.25(OVRL - 1)]

Track 2 PDNS Subjective Evaluation

Track 2: 10 submissions

	SIG		BAK		OVR					
Model	MOS	dMOS	MOS	dMOS	MOS	dMOS	CI	WAcc	dWAcc	Final Score
Team42_Meet_TEA	4.19	-0.06	4.55	2.41	3.97	1.41	0.03	0.69	-0.03	0.72
Team17_SCUT_Meetme	4.2	-0.05	4.51	2.37	3.96	1.41	0.03	0.7	-0.02	0.72
Team19_SRCBSL	4.17	-0.08	4.29	2.15	3.83	1.27	0.03	0.69	-0.03	0.70
Team29_Kuaishou	3.88	-0.37	4.32	2.18	3.63	1.07	0.04	0.68	-0.04	0.67
Team31_BUCEA	3.99	-0.26	3.74	1.6	3.42	0.87	0.03	0.67	-0.05	0.64
Team15_PCG-AIID	3.73	-0.52	4.49	2.35	3.55	1	0.04	0.61	-0.11	0.62
Baseline	3.64	-0.61	4.24	2.1	3.4	0.84	0.04	0.64	-0.08	0.62
Team44_zjl_spkext	3.55	-0.7	4.26	2.12	3.35	0.79	0.04	0.59	-0.13	0.59
Team49_Kuaiyu	3.51	-0.74	3.87	1.73	3.15	0.6	0.04	0.63	-0.09	0.58
Team6_NTUMIRLab	3.74	-0.51	3.37	1.23	3.09	0.53	0.04	0.62	-0.10	0.57
Noisy	4.25	0	2.14	0	2.56	0	0.03	0.72	0.00	0.55
Team13_aispeech	3.14	-1.11	3.43	1.29	2.64	0.09	0.04	0.49	-0.23	0.45

Results: DNSMOS, Model size

• Performance of DNSMOS: The <u>high correlation</u> between subjective scores and DNSMOS P.835 in both tracks shows the efficacy of DNSMOS P.835 in ranking the DNS models.

Table 1. DNSMOS PCC and SRCC

		Track 1		Track 2							
	SIG	BAK	OVRL	SIG	BAK	OVRL					
PCC	0.93	0.92	0.94	0.92	0.96	0.96					
SRCC	0.78	0.89	0.85	0.84	0.89	0.93					

Comparison of top teams

https://arxiv.org/abs/2202.13288

Table 2. Comparison of top performing models.

Track	Team	Params	Real- time Factor	Additional data-sets
1	2 [28]	1.5M	0.60	N
1	14 [29]	10.27 M	0.68	N
1	41 [30]	29.9 M	0.45	N
1	25 [31]	5.29 M	0.65	N
2	42 [27]	7.81 M	0.96	Y
2	29 [32]	12.41 M	0.19	Y

Results: ANOVA

- For the top performing teams, we ran an ANOVA test to determine statistical significance
- The 2nd, 3rd and 4th place are tied for <u>Track 1</u>. Likewise, the 1st and 2nd place for <u>Track 2</u> are tied. Teams 17, 19, and 42 did not submit a paper so were <u>disqualified</u> per the challenge rules.

ANOVA results for Track-1

	Team2_Baidu	Team14_Alibaba_NTU	Team19_SRCBSL	Team41_Harbin	Team25_CMRI_BJTU
Team2_Baidu	1	0	0	0	0
Team14_Alibaba_NTU	0	1	0.21	0.10	0
Team19_SRCBSL	0	0.19	1	0.79	0.03
Team41_Harbin	0	0.15	0.89	1	0.05
Team25 CMRI BJTU	0	0	0.04	0.07	1

ANOVA results for Track-2

	Team42_Meet_TEA	Team17_SCUT_Meetme	Team19_SRCBSL	Team29_Kuaishou	Team15_PCG- AIID	Team31_BUCEA_Yu
Team42_Meet_TEA	1.00	0.70	0.00	0.00	0.00	0.00
Team17_SCUT_Meetme	0.70	1.00	0.00	0.00	0.00	0.00
Team19_SRCBSL	0.00	0.00	1.00	0.00	0.00	0.00
Team29_Kuaishou	0.00	0.00	0.00	1.00	0.00	0.00
Team15_PCG-AIID	0.00	0.00	0.00	0.00	1.00	0.00
Team31_BUCEA_Yu	0.00	0.00	0.00	0.00	0.00	1.00

Results: Mobile vs Desktop Track 1

• MOS scores for clips recorded on <u>mobile devices</u> is higher than those from desktop devices suggesting that mobile had better acoustic devices or environments than the desktop scenarios.

T#				1	Desktop)				Mobile									All Devices									14/	-114/	Final
Team#	SIG	dSIG	CI	BAK	dBAK	CI	OVR	dOVR	CI	SIG	dSIG	CI	BAK	dBAK	CI	OVR	dOVR	CI	SIG	dSIG	CI	BAK	dBAK	CI	OVR	dOVR	CI	wacc	dWacc	Score
2	3.98	0.09	0.07	4.45	2.32	0.06	3.67	1.26	0.07	4.42	(0.02)	0.03	4.79	2.61	0.02	4.29	1.58	0.03	4.30	0.00	0.03	4.70	2.54	0.02	4.13	1.49	0.03	0.70	(0.02)	0.74
14	3.88	(0.02)	0.07	3.88	1.76	0.08	3.31	0.89	0.07	4.40	(0.04)	0.03	4.42	2.24	0.03	4.10	1.38	0.03	4.27	(0.03)	0.03	4.28	2.12	0.03	3.89	1.25	0.03	0.69	(0.03)	0.71
19	3.82	(0.08)	0.07	3.90	1.77	0.08	3.34	0.93	0.07	4.34	(0.10)	0.03	4.41	2.23	0.03	4.05	1.33	0.04	4.20	(0.10)	0.03	4.28	2.11	0.03	3.87	1.23	0.03	0.67	(0.04)	0.70
41	3.75	(0.15)	0.07	4.13	2.01	0.08	3.35	0.94	0.08	4.24	(0.20)	0.03	4.58	2.40	0.03	4.04	1.32	0.04	4.11	(0.19)	0.03	4.46	2.30	0.03	3.86	1.22	0.03	0.67	(0.04)	0.69
25	3.60	(0.29)	0.07	4.22	2.10	0.07	3.27	0.86	0.08	4.17	(0.27)	0.04	4.67	2.49	0.03	4.02	1.30	0.04	4.02	(0.27)	0.03	4.55	2.39	0.03	3.82	1.19	0.03	0.65	(0.07)	0.68
46	3.58	(0.31)	0.07	3.77	1.65	0.08	3.09	0.68	0.07	4.19	(0.25)	0.03	4.41	2.23	0.03	3.90	1.19	0.04	4.03	(0.27)	0.03	4.25	2.08	0.03	3.69	1.06	0.03	0.67	(0.05)	0.67
15	3.57	(0.32)	0.07	4.02	1.90	0.08	3.13	0.71	0.08	4.22	(0.22)	0.03	4.58	2.40	0.03	3.99	1.27	0.04	4.05	(0.25)	0.03	4.43	2.27	0.03	3.77	1.13	0.04	0.65	(0.07)	0.67
45	3.69	(0.21)	0.07	3.81	1.69	0.08	3.15	0.73	0.07	4.13	(0.31)	0.04	4.37	2.19	0.03	3.84	1.13	0.04	4.02	(0.28)	0.03	4.22	2.06	0.03	3.66	1.03	0.03	0.67	(0.05)	0.67
29	3.65	(0.24)	0.07	3.86	1.74	0.08	3.10	0.68	0.07	4.09	(0.35)	0.04	4.40	2.22	0.04	3.81	1.09	0.04	3.98	(0.32)	0.03	4.26	2.10	0.03	3.62	0.99	0.04	0.68	(0.04)	0.67
3	3.59	(0.30)	0.08	4.11	1.99	0.07	3.24	0.83	0.07	4.11	(0.33)	0.04	4.53	2.35	0.03	3.90	1.19	0.04	3.98	(0.32)	0.03	4.42	2.26	0.03	3.73	1.09	0.04	0.65	(0.07)	0.67
7	3.68	(0.21)	0.07	3.86	1.74	0.08	3.15	0.73	0.07	4.11	(0.33)	0.04	4.31	2.13	0.03	3.78	1.07	0.04	4.00	(0.30)	0.03	4.20	2.03	0.03	3.62	0.98	0.03	0.68	(0.04)	0.67
11	3.47	(0.42)	0.07	4.19	2.07	0.07	3.19	0.78	0.07	4.01	(0.43)	0.04	4.58	2.40	0.03	3.83	1.12	0.04	3.87	(0.43)	0.03	4.48	2.31	0.03	3.67	1.03	0.03	0.65	(0.07)	0.66
37	3.57	(0.32)	0.07	3.81	1.69	0.08	3.05	0.64	0.07	4.12	(0.32)	0.04	4.36	2.18	0.03	3.80	1.09	0.04	3.98	(0.32)	0.03	4.22	2.06	0.03	3.61	0.97	0.03	0.65	(0.07)	0.65
22	3.77	(0.13)	0.07	3.36	1.24	0.08	3.02	0.61	0.07	4.25	(0.19)	0.03	3.76	1.59	0.04	3.62	0.91	0.04	4.13	(0.17)	0.03	3.66	1.50	0.03	3.47	0.83	0.03	0.67	(0.05)	0.64
43	3.57	(0.32)		3.54	1.42	0.08	2.99	0.58	0.07	4.08	, ,		3.97	1.80	0.04	3.63	0.91	0.04	3.95	(0.35)	0.03	3.86	1.70	0.04	3.46	0.83	0.03	0.67	(0.05)	0.64
33	3.64	(0.25)	0.08	3.61	1.49	0.08	3.07	0.65	0.07	4.11	(0.33)		3.85	1.67	0.04	3.62	0.90	0.04	3.99	(0.31)		3.79	1.62	0.03	3.47	0.84	0.03	0.66	(0.06)	0.64
47	3.62	(0.27)	0.08	3.61	1.49	0.08	3.02	0.60	0.07	3.92	(0.52)	0.04	3.96	1.78	0.04	3.48	0.77	0.04	3.84	(0.46)		3.87	1.70	0.04	3.36	0.73	0.04	0.67	(0.05)	0.63
16	3.19	(0.70)		3.85	1.73	0.08	2.87	0.46	0.07	3.90	(0.54)		4.36	2.19	0.03	3.68	0.97	0.04	3.72	(0.58)		4.23	2.07	0.03	3.48	0.84	0.04	0.62	(0.10)	0.62
54	3.25	(0.64)		3.75	1.62	0.08	2.85	0.44	0.07	3.89	(0.55)		4.13	1.95	0.04	3.56	0.85	0.04	3.73	(0.57)		4.03	1.87	0.03	3.38	0.74	0.04	0.64	(0.08)	0.62
35	3.26	(0.63)		3.95	1.82	0.07	2.89	0.48	0.07	3.92	(0.52)		4.13	1.95	0.04	3.56	0.84	0.04	3.75	(0.55)		4.08	1.92	0.03	3.39	0.75	0.03	0.63	(0.09)	0.61
49	2.74	(1.15)		3.88	1.76		2.47	0.05	0.08	3.92	(0.52)		4.18	2.00	0.04	3.63	0.92	0.04	3.62	(0.68)		4.10	1.94	0.04	3.33	0.70	0.04	0.62	(0.10)	0.60
	3.15	(0.75)		3.76	1.64	0.08	2.78	0.37	0.07	3.81	(0.64)		4.01	1.83	0.04	3.44	0.73	0.04	3.64	(0.66)		3.94	1.78	0.04	3.27	0.63	0.04	0.63	(0.09)	0.60
39	3.62	(0.28)		3.13	1.01	0.08	2.80	0.38	0.07	4.07	(0.37)	0.04	3.37	1.19	0.04	3.30	0.58	0.04	3.95	(0.35)	0.03	3.31	1.15	0.04	3.17	0.53	0.03	0.64	(0.08)	0.59
52	3.52	(0.37)		2.95	0.83	0.07	2.68	0.26	0.06	4.05	(0.39)	0.04	3.09	0.91	0.04	3.12	0.41	0.04	3.91	(0.39)	0.04	3.06	0.89	0.04	3.01	0.37	0.03	0.68	(0.04)	0.59
Noisy	3.89	-	0.07	2.12	-	0.06	2.41	-	0.06	4.44	- (0.05)	0.03	2.18	-	0.04	2.72	-	0.04	4.30	- (0.0-)	0.03	2.16	-	0.03	2.64	-	0.03	0.72	- (0.75)	0.56
31	3.72	(0.17)	0.07	3.46	1.34	0.08	3.00	0.59	0.07	4.15	(0.29)	0.04	3.81	1.63	0.04	3.59	0.87	0.04	4.04	(0.26)	0.03	3.72	1.56	0.04	3.44	0.80	0.03	0.02	(0.70)	0.31
51	1.63	(2.27)	0.06	3.66	1.54	0.09	1.59	(0.83)	0.05	2.21	(2.24)	0.04	3.58	1.40	0.05	2.02	(0.69)	0.03	2.06	(2.24)	0.03	3.60	1.44	0.04	1.91	(0.73)	0.03	0.02	(0.70)	0.12

Summary

- V4 challenge models provided feasibility of superior DNS performance
- Most successful DNS Challenge yet, both in terms of number of participants and quality of the models
- DSIG >= 0 seems must for winning, it almost eliminates WAcc degradations. Models are ranked using Final scores.
- Winning model shows new interesting test case for headset scenarios where neighboring speaker is in far-field
- For the top performing teams, we ran an ANOVA test to determine statistical significance (see https://aka.ms/dns-challenge). The 2nd, 3rd and 4th place are tied for Track 1. Likewise, the 1st and 2nd place for Track 2 are tied.

 Teams 17, 19, and 42 did not submit the ICASSP paper hence disqualified.
- Organizing team conducted the reviews of papers. Only top models were invited to submit paper.

What is Next for 5th DNS Challenge?

- Detecting faked/spoofed neighboring speakers and noise is essential to ensure representative testset
- Creating new spec for DNS testset- headset, personalized etc.
- To add diversity in testset more speakers, more languages, accents, and devices, scenarios (emotional, paralinguistics), device & language mis-match in personalized DNS
- Create approach for model validation of <u>challenge</u> participants. Strong indications that some teams utilize non-causal models or different models for different scenarios.
- Create inference engine for computing the model complexity/inference time for all challenge models. Further, include a validation of the lookahead to ensure fair comparison.
- Adding CCR MOS in addition to ACR MOS to detect suppression of emotional/paralinguistic speech etc.