TOWARDS JOINT FRAME-LEVEL AND MOS QUALITY PREDICTIONS WITH LOW-COMPLEXITY OBJECTIVE MODELS

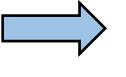
Keywords / context

- Cloud Gamin
- Automatic qu • Very low com

Framework:

New family of me a <u>new performa</u>

Contributions:

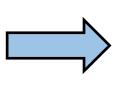

- 1. Evaluation of
- 2. Design of thre
- 3. Proposition of
- 4. Proposition of

KUGVD dataset

- Kingston Univ
- . 30 videos, 6 g
- H.264, 600 k
- . Lab tests, ACI

CGVDS dataset

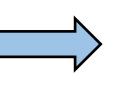
- TU Berlin
- . 39 videos fror 1080p@60fp
- H.264 (NVEN)

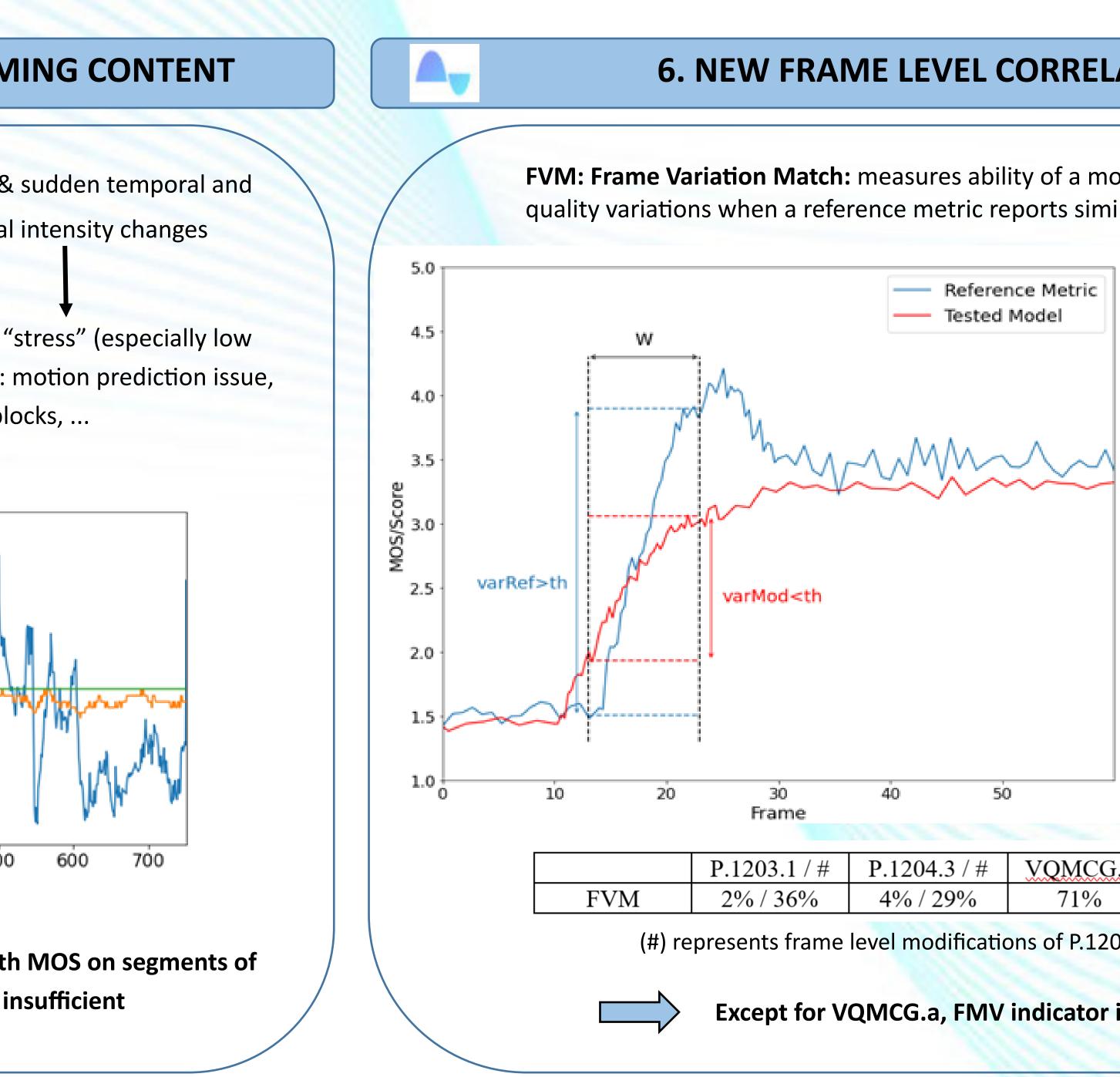

7 state of the ar

- PSNR, SSIN
- . NDNetGar
- . DBCNN: co
- P.1203.1,

Dataset split: tr

Linear mapping


1. CONTEXT & CONTRIBUTIONS		4. THREE NEW MODELS & RESULTS: learning-based / low-complexity /		
ext:		VQMCG: Video Quality Metrics for Cloud Gaming: new learning-based models: no-reference, no-access to decode	ed pixels	
ning				
c quality evaluation using bitstream derived features (qp, mv,)		• VQMCG.a: weighted linear combination of features, weights learnt on training set with gradient des	scent	
complexity and very low delay, no access to decoded pixels		• • • • • • • • • • • • • • • • • • •	with MOS by find-	
785		ing a hyperplane on the training set		
P.BBQCG: Parametric bitstream-based Quality Assessment of Cloud Gaming Services		$\subseteq I \subseteq .$ VOMCG.C: Multi-Laver Perceptron (MLP) NN with fully connected lavers, weights initialized with GL	orot. trained with	
Work item of ITU-T Study	y Group 12 Question 14	back-propagation with Adam optimizer (4 layers with 100, 50, 25 and 10 neurons, activated by a Re		
	performance indicators vs MOS, and jointly maximizing			
	ity of metrics to detect <u>sudden abrupt quality changes</u>	RMSE 0.40 0.32 0.20	n VMAF and NDNetGan	
at frame level, that ou	cur frequently in gaming content	PLCC 0.87 0.91 0.93		
		SRCC 0.88 0.91 0.92	G.c outperform existing	
of existing metrics on heterogen	ous gaming dataset (different codecs, bitrates,)	to compare with table of part 3		
hree new very low-delay and ver	ry low-complexity learning-based models	Why high performance for the learning-based models? Games (CG) made of repetitive	visual characteristics (m	
	nce indicator to consider gaming content characteristics	Similar repeating scenes, spatial and temporal similarities: gaming content adapted to		
	optimize models on all performance indicators	, on the repeating section, spatial and temperar similarities. Samily content adapted to		
2 6	SAMING DATASETS			
2. 2		5. A DIFFICULTY OF GAMING CONTENT A. NI	EW FRAME LEVEL	
t	TGDS dataset			
University	 Tencent Media Lab 	EV/M: Eramo Varia	tion Match: measures a	
		auglity variations v	when a reference metric	
, 6 games, 1080p@30fps	 170 videos from 34 scenes of Fortnite, Blade&Soul, Path of Exile, League of Legend, The Witcher 	spatial intensity changes		
0 kbps to 4 Mbps	· 1080p@60fps	• explosions	Refe	
ACR	• H.264 (proprietary), low-delay, 6 to 30 Mbps	large and abrupt/sudden codec "stress" (especially low 4.5	- Teste	
	 Crowd-sourcing tests, 64 workers 	auality changes		
		not reflected by low-	Δ	
from 13 games,	 5 grade scale, ACR Ctwist surflight neurophysical series and light 	intra blocks,	ή	
Ofps	 Strict outlier removal process applied Confidence intervals 0.22 	3.5	man	
ENC), 2 to 6 Mbps	Confidence interval: 0.33	e e e e e e e e e e e e e e e e e e e	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		4.0		
3 datasets mer	ged: 239 PVS and 53 different scenes	3.8	and the second second	
Difficulty ind	creased / Realism increased	3.6 MMM	/arMod <th< td=""></th<>	
		₽ 3.4 2.0		
3. STATE OF T	THE ART EVALUATION			
		2.8 VMAF		
e art metrics tested (references in the paper):		2.6 MOS low-complexity metric 10 20	_ 30 _ 40	
			Frame	
SSIM, VMAF: complex, full refere	nce, with access to decoded pixels			
• •		0 100 200 300 400 500 600 700 P	1203.1 / # P.1204.3 / #	
• •	nce, with access to decoded pixels NN based, trained on gaming content	0 100 200 300 400 500 600 700 Frame	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29%	
Gaming: complex, no reference,	nce, with access to decoded pixels NN based, trained on gaming content ased	0 100 200 300 400 500 600 700 Frame	1203.1 / # P.1204.3 / #	
Gaming: complex, no reference, : complex, no-reference, DNN ba 1, P.1204.3: low-complexity bitst	nce, with access to decoded pixels NN based, trained on gaming content ased tream based models	0 100 200 300 400 500 600 700 Frame FVM 2 Achieving good correlation with MOS on segments of (#) represent	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29% sents frame level modifica	
Gaming: complex, no reference, : complex, no-reference, DNN ba 1, P.1204.3: low-complexity bitst : training (186 PVS) - testing (53	nce, with access to decoded pixels NN based, trained on gaming content ased tream based models PVS)	0 100 200 300 400 500 600 700 Frame FVM 2 Achieving good correlation with MOS on segments of (#) represent	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29%	
Gaming: complex, no reference, : complex, no-reference, DNN ba 1, P.1204.3: low-complexity bitst : training (186 PVS) - testing (53	nce, with access to decoded pixels NN based, trained on gaming content ased tream based models	0 100 200 300 400 500 600 700 Frame FVM 2 Achieving good correlation with MOS on segments of (#) represent	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29% sents frame level modifica	
Gaming: complex, no reference, : complex, no-reference, DNN ba 1, P.1204.3: low-complexity bitst : training (186 PVS) - testing (53 ing applied for RMSE computatio	nce, with access to decoded pixels NN based, trained on gaming content ased tream based models PVS) on (based on training set) [ITU-T P.1401]	Achieving good correlation with MOS on segments of several seconds is insufficient	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29% sents frame level modification xcept for VQMCG.a, FN	
Gaming: complex, no reference, : complex, no-reference, DNN ba 1, P.1204.3: low-complexity bitst : training (186 PVS) - testing (53 ing applied for RMSE computation PSNR SSIM V	nce, with access to decoded pixels NN based, trained on gaming content ased tream based models PVS)	0 100 200 300 400 500 600 700 Frame FVM 2 Achieving good correlation with MOS on segments of (#) represent	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29% sents frame level modification xcept for VQMCG.a, FN	
Gaming: complex, no reference, : complex, no-reference, DNN ba 1, P.1204.3: low-complexity bitst : training (186 PVS) - testing (53 ing applied for RMSE computation $\frac{PSNR SSIM V}{RMSE 0.58 0.56 (0)}$	nce, with access to decoded pixels NN based, trained on gaming content ased tream based models PVS) on (based on training set) [ITU-T P.1401] <u>MAF P.1203 P.1204 DBCNN NDNet</u> 0.44 0.47 0.46 0.50 0.42 0.81 0.79 0.80 0.76 0.83	Achieving good correlation with MOS on segments of several seconds is insufficient	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29% sents frame level modification xcept for VQMCG.a, FN	
Gaming: complex, no reference, : complex, no-reference, DNN ba 1, P.1204.3: low-complexity bitst : training (186 PVS) - testing (53 ing applied for RMSE computation $\frac{PSNR SSIM V}{RMSE 0.58 0.56 (0)}$	nce, with access to decoded pixels NN based, trained on gaming content ased tream based models PVS) on (based on training set) [ITU-T P.1401] <u>MAF P.1203 P.1204 DBCNN NDNet</u> 0.44 0.47 0.46 0.50 0.42	0 100 200 300 400 500 600 700 Frame Frame Image: Strain Strai	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29% sents frame level modification xcept for VQMCG.a, FN EARNING & CON	
Gaming: complex, no reference, : complex, no-reference, DNN ba 1, P.1204.3: low-complexity bitst : training (186 PVS) - testing (53 ing applied for RMSE computation $\frac{PSNR SSIM V}{RMSE 0.58 0.56 (0)}$	nce, with access to decoded pixels NN based, trained on gaming content ased tream based models PVS) on (based on training set) [ITU-T P.1401] <u>MAF P.1203 P.1204 DBCNN NDNet</u> 0.44 0.47 0.46 0.50 0.42 0.81 0.79 0.80 0.76 0.83 0.82 0.80 0.80 0.74 0.82	Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Distribution of the several seconds is insufficient Image: Dist	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29% sents frame level modification xcept for VQMCG.a, FN	
Gaming: complex, no reference, : complex, no-reference, DNN back 1, P.1204.3: low-complexity bitst : training (186 PVS) - testing (53 ing applied for RMSE computation $\frac{\hline PSNR SSIM V}{RMSE 0.58 0.56 (C)}$ PLCC 0.67 0.68 (C) SRCC 0.65 0.78 (C) • Low performance of PSN	nce, with access to decoded pixels NN based, trained on gaming content ased tream based models PVS) on (based on training set) [ITU-T P.1401] <u>MAF P.1203 P.1204 DBCNN NDNet</u> 0.44 0.47 0.46 0.50 0.42 0.81 0.79 0.80 0.76 0.83 0.82 0.80 0.80 0.74 0.82	0 100 200 300 400 500 600 700 Frame Image: Constraint of the	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29% sents frame level modification xcept for VQMCG.a, FN EARNING & CON VOMCG.c* 0.30 0.92	
Gaming: complex, no reference, : complex, no-reference, DNN ba 1, P.1204.3: low-complexity bitst : training (186 PVS) - testing (53 ing applied for RMSE computation $\frac{PSNR SSIM V}{RMSE 0.58 0.56 (0)}$	nce, with access to decoded pixels NN based, trained on gaming content ased tream based models PVS) on (based on training set) [ITU-T P.1401] <u>MAF P.1203 P.1204 DBCNN NDNet</u> 0.44 0.47 0.46 0.50 0.42 0.81 0.79 0.80 0.76 0.83 0.82 0.80 0.80 0.74 0.82	0 100 200 300 400 500 600 700 Frame Image: Frame Image	1203.1 / # P.1204.3 / # 2% / 36% 4% / 29% sents frame level modification xcept for VQMCG.a, FN EARNING & CON VOMCG.c* 0.30	


Joel Jung, Alexandre Giraud, Meijia Song, Songnan Li, Xiang Li, Shan Liu

Tencent Media Lab

lexi

cteristics (motion pattern, color diversity, backgrounds, ...) ed models

& CONCLUSION

tv	/	ow-	-del	av	
- 7	-			,	

Features:					
VQMCG based of	on features extracted or com-				
puted from the	parsed bitstream:				
Qp	Avg nb P macroblocks / frame				
Frame size	Avg nb of 8x8 blocks				
Bitrate	Avg nb of blocks with 8x8 transform size				
Spatial complexity	Avg nb of blocks without frequential transform				
	Avg nb of skipped blocks				

NDNetGaming orm existing methods on "classical" indicators

E LEVEL CORRELATION INDICATOR

measures ability of a model to reflect large and sudden ence metric reports similar kind of variation

> FVM: counts % of time when the model has a quality change varMod above a threshold th, when a reference metric also has a quality change varRef above th, and in the same direction, in the same window W

> Reference metric: VMAF (any reliable full-reference metric can be used) Matching a full-reference metric with

> low-complexity models at the frame level is needed

04.3 / #	VQMCG.a	VQMCG.b	VQMCG.c			
/ 29%	71%	24%	31%			

vel modifications of P.1203.1 & P.1204.3

MCG.a, FMV indicator is too low!

FVM vs VMAF @ frame level improved AND

other indicators vs MOS preserved

Excellent correlation on all indicators