

THE VICOMTECH AUDIO DEEPFAKE DETECTION SYSTEM BASED ON WAV2VEC2 FOR THE 2022 ADD CHALLENGE

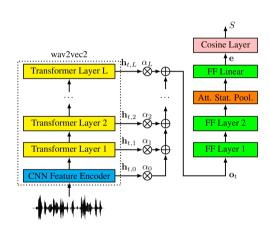
Juan M. Martín-Doñas, Aitor Álvarez

Index

- Audio Deep synthesis Detection (ADD) Challenge 2022
- Wav2Vec2-based proposed system
- Experimental framework
- Experimental results
- Conclusions and future work

Audio Deep synthesis Detection (ADD) Challenge 2022

- Recent growth of deep learning based text-to-speech (TTS) synthesis and voice conversion (VC) technologies
- Generation of deepfake speech. Malicious use: foolish human or even automatic speaker verification systems
- Need reliable countermersures. Audio deepfake detection systems.
 - Example: ASVspoof series (2015-2021)
- Great improvements achieved, interest in more challenging scenarios:
 - Noisy and reverberant scenarios
 - · Speech modified through different channels, codecs or compression algorithms
 - Partially spoofed audio


Audio Deep synthesis Detection (ADD) Challenge 2022

- ▶ 2022 Audio Deep synthesis Detection (ADD) Challenge: Detection of deep synthesis and manipulated audios in different scenarios
 - Track 1: Low-quality fake audio detection
 - Track 2: Partially fake audio detection
 - Track 3: Audio fake game
- Vicomtech proposed audio deepfake detection system for Tracks 1 and 2:
 - Wav2Vec2 pre-trained feature extractor
 - Downstream classifier model trained for deepfake detection
 - Data augmentation techniques to adapt the classifier
 - Winners of Track 1 and fourth position in Track 2
 - Competitive results in ASVspoof 2021 Challenge

Wav2Vec2-based proposed system

W2V2 Feature Extractor:

- Cross-lingual Large models (XLS) 300M parameters
 - 53 and 128 languages
- Self-supervised learning with contrastive loss
 - Masked encoded features
 - Predict quantized representations from contextualized ones
- Pre-trained model
 - Freeze W2V2 parameters
 - Finetuning downstream classifier

Wav2Vec2-based proposed system

Classification Model:

• Representations from L=25 transformer layers

- Attentive statistical temporal pooling (mean and std dev.)
- Compute embedding e
- Cosine scoring layer

►
$$S = \cos(w, e) \in [-1, 1]$$

One-class softmax loss function

Layer name	Output size	
W2V2 features	$N \times T \times 1024 \times 25$	
Temp. Norm. + Layer weight.	$N \times T \times 1024$	
FF Layer (1 and 2)	$N \times T \times 128$	
Att. Stat. Pool.	$N \times 256$	
FF Linear	<i>N</i> × 128	
Cosine Layer	N	

Experimental framework

- ► ADD 2022 database:
 - Genuine and TTS/VC speech from AISHELL-3 speech corpus
 - Training and development clean speech (\sim 28K utt. each)
 - Adaptation (\sim 1K) and test (\sim 100K) sets for each track
 - ► Track 1: Real-world noises and background music
 - ► Track 2: Partial fake manipulation using real or synthesized audios
- ASVspoof 2021 database:
 - Train and development sets from ASVspoof 2019 LA (TTS/VC)
 - Logical Access (LA): Transmission through real telephonic systems
 - Speech Deepfake (**DF**): Processed speech with commercial audio codecs
- ► Adaptation and data augmentation techniques:
 - Low-pass FIR filtering (narrowband and wideband): Frequency masking
 - ADD 2022: Training using train and adaptation sets
 - Track 2 (ADD): Generating new partial deepfakes by audio overlapping

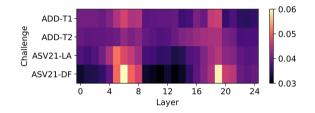
Results on ADD 2022:

- XLS-128 outperforms XLS-53
- Few adaptation data help (main improvements)
- Generated partial deepfakes in Track 2 improve further the model performance
- Narrowband FIR filtering reduce 1% EER in both tracks
- Competitive system:

► T1: 21.7% EER (1st)

T2: 16.6% EER (4th)

W2V2	Sets	DA	Track1	Track2
XLS-53	Train	-	32.96	38.09
AL3-33	Tr.+Adap.	-	23.70	33.73
XLS-128	Train	-	32.20	45.88
	Tr.+Adap.	-	22.62	30.35
	Tr.+Adap.	FIR	21.71	-
	Tr.+Adap.	partial	-	17.58
	Tr.+Adap.	FIR+part.	-	16.59


- Results on ASVspoof 2021:
 - XLS-128 also outperforms XLS-53 model
 - Narrowband FIR for LA
 - 8 kHz bandwidth telephone channel
 - Wideband FIR for DF
 - Emulate general audio codecs

W2V2 model	Data augmentation	LA	DF
	-	8.87	7.71
XLS-53	FIR-NB	4.34	11.27
	FIR-WB	4.98	6.99
	-	7.20	5.68
XLS-128	FIR-NB	3.54	6.18
	FIR-WB	7.08	4.98

- Previous ASVspoof 2021 results:
 - Ensemble classifiers with robust neural models (LCNN, ECAPA, ResNet)
 - Poor generalization on DF set (other speech databases)
 - Previous W2V2 only used representations from last layer (need finetuning)
 - Our proposal uses general W2V2 feature extractor with specialized downstream model (using data augmentation)

System	LA	DF
LCNN+ResNet+RawNet	1.32	15.64
GMM+LCNN (Ensemble)	3.62	18.30
ECAPA-TDNN (Ensemble)	5.46	20.33
ResNet (Ensemble)	3.21	16.05
W2V2 (fixed)+LCNN+BLSTM	10.97	7.14
W2V2 (finetuned)+LCNN+BLSTM	7.18	5.44
Proposed system	3.54	4.98

- Weight values α_I for the transformer layers:
 - The information from different layers is used for deepfake detection
 - Different layer weights depending on the scenario
 - Example: For DF, special focus around layers 6 and 19

Conclusions and future work

- Our approach effectively exploits the contextualized representation from the different transformer layers of a pre-trained Wav2Vec2 model
- ► The downstream classifier can be finetuned using these representations and adapted through adequate data augmentation techniques
- Our system shows competitive results in both ASVspoof 2021 (especially in DF task) and ADD 2022 challenges (winner of Track 1)
- ► Future work: Test other self-supervised models and additional data augmentation techniques

Thank you!

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Contact: Juan M. Martin (jmmartin@vicomtech.org)