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Tensor completion aims at filling the missing or unobserved entries 
based  on partially observed tensors. However, utilization of the 
observed tensors often raises serious privacy concerns in many 
practical scenarios. To address this issue, we propose a solid and 
unified framework that contains several approaches for applying 
differential privacy to the two most widely  used tensor decom-
position methods: i) CANDECOMP/PARAFAC and ii) Tucker 
decompositions. For each approach, we establish a rigorous privacy 
guarantee and meanwhile evaluate the privacy-accuracy trade-off.
Experiments on synthetic datasets demonstrate that our proposal 
achieves high accuracy for tensor completion while ensuring strong 
privacy protections.

Abstract
• Private Input Perturbation

• Private Gradient Perturbation

• Private Output Perturbation
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Privacy-preserving Perturbation Approaches
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Based on the stages of tensor completion, we design three perturbation 
approaches (input, gradient and output) to ensure privacy, respectively.

3
Differential Privacy Framework

For an tensor , the standard Tucker decomposition is:

In the special case where is superdiagonal (i.e., ) and 
, it would reduce to CP decomposition:

where . Therefore, in the following parts, we provide theore
tical analysis and algorithm procedures of the perturbation methods 
based on Tucker decomposition. By imposing a F-norm penalty to
restrict the complexity of the core tensor, the Tucker decomposition
problem can be reformulated as:

2
Problem Formulation

• Experimental validation on ML-100K through 10 runs.

• Evaluate our proposal on synthetic datasets. The reported results
are the average over 50 runs.

5
Experiments

We propose a unified framework for applying differential privacy to 
tensor completion. In addition, for each privacy-preserving approach
in our framework, we provide complete algorithm procedures and 
theoretical analysis. Experimental results on synthetic and real 
datasets demonstrate that the proposed approaches can yield high 
accuracy, while ensuring strong privacy protections. 
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