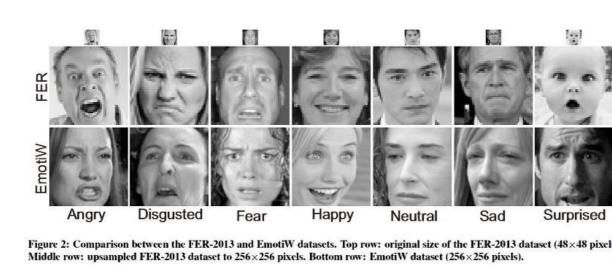


Facial Expression Recognition (FER) Task

Objective: classify expression on face images into several categories.

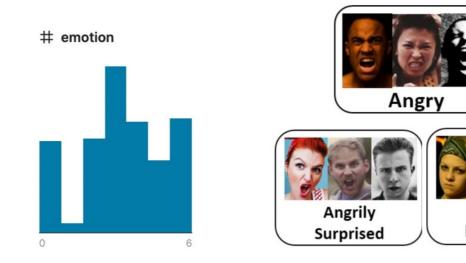
Dataset Type: "In the Lab" (ITL) vs "In the Wild" (ITW)

source: Deep Convolutional Neural Network for Expression Recognition



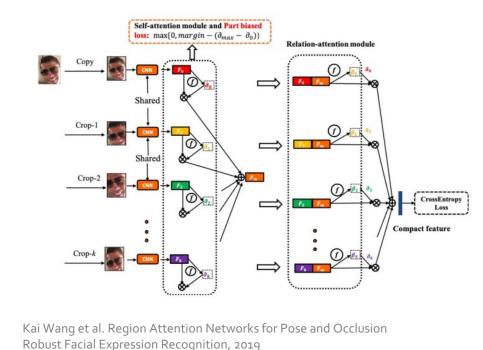
Challenges on FER In the wild (ITW) Dataset

- 1. Large Image Variances
- Occlusion, Pose, etc.
- Generally Low and Non-uniform Image resolution
- 2. Annotator's subjectivity on emotion classification
- Class ambiguity no clear/gold standard. - Data imbalance



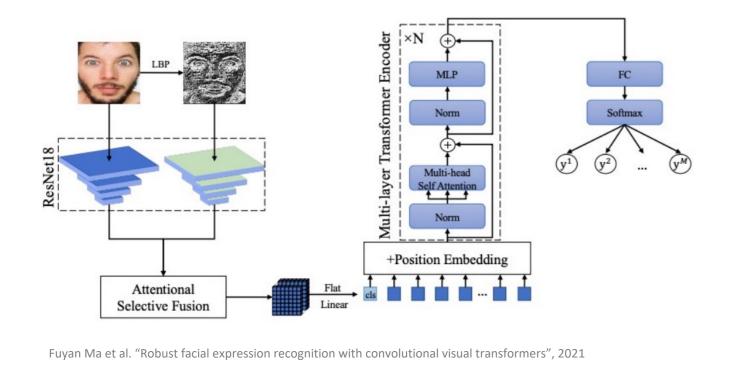
Related Works / Background

Q1. How to capture **fine-grained features** when performing FER task with low-resolution images? Related Work ①: Use deeper model or (and) employ attention mechanism.



input image CNN Feature Extraction deep feature

Related Work (2): Use Vision Transformer, but with input pre-processing network.



- ✓ In order to use pretrained Vision Transformer, we need to rescale input image to pre-defined resolution.
- ViT paper (Dosovitskiy, 2020) recommends using images of higher-resolution when finetuning.

 \Rightarrow Is traditional interpolation-based upscaling approaches the best in this scenario?

Vision Transformer Equipped with Neural Resizer on Facial Expression Recognition Task

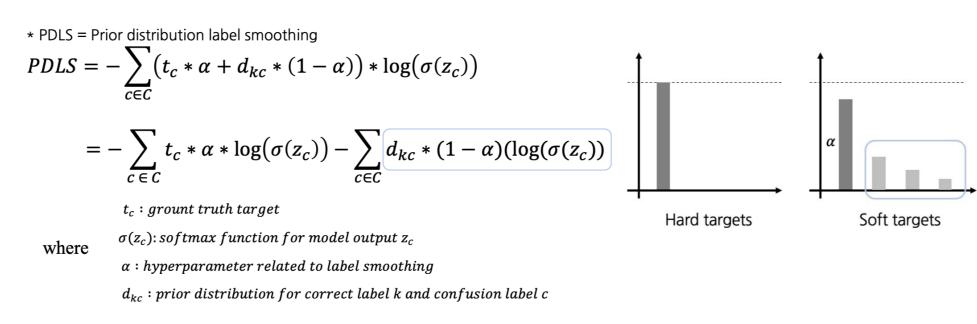
Hyeonbin Hwang¹, Soyeon Kim¹, Wei-Jin Park², Jiho Seo², Kyungtae Ko², Hyeon Yeo¹

KAIST, Republic of Korea¹ ACRYL, Republic of Korea²

Proposed Framework a. Neural Resizer • Inspired by [1], we propose a data-driven learnable resizer instead of conventional deterministic Interpolation methods. • While [1] applies learnable resizer for CNN and downscaling only, our module super-resolutions the input image, and after downsizes the image according to the ViT input size. Patching & Feedin **source**: Deep learning for emotion recognition on small datasets using transfer learning (2015) Neural Resize (b) Proposed training pipeline. (a) Baseline. CNN blocks Residual blocks Interpolation (+) Summation CNN blocks **Key Questions** Results Quantitative 1. How can we effectively feed **low-resolution images** into **Pretrained Vision Transformer?** 2. How can we consider **label ambiguity** and **imbalance** Table 1. Angrily **simultaneously** in the training process? Disgusted

Q2. How to effectively alleviate **class ambiguity and imbalance** at the same time?

Related Work ①: Use prior distribution to solve ambiguity.

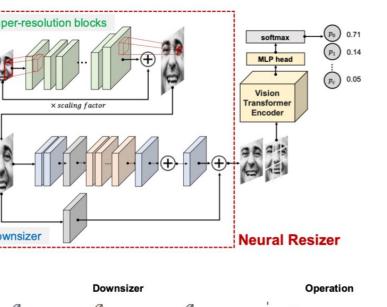


 \Rightarrow How can we design an effective loss function that can also consider **class imbalance**?

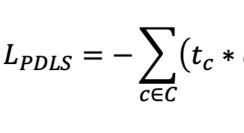
Dataset

a. FERPlus: collected from google search engine and consists of about 30K images. All images are in grayscale and resized to 48 x 48. It is also comprised of 8 different emotions - neutral, happiness, surprise, sadness, anger, disgust, fear, contempt -

b. RAF-DB: We use aligned RAF-DB, which consists of about 12K training images, which are all resized to 100 x 100. RAF-DB has images from 7 emotions, excluding contempt from the emotions in FERPlus.



work in [3].



- Neural Resizer with F-PDLS loss generally improves performance with vision transformer variants in general, shown in
- We conduct an ablation study on our Neural Resizer and witness the importance of data quality before resizing, shown in Table 2.
- We also conduct an ablation study on our loss function and observe our loss function benefits exclusively with our proposed framework. We hypothesize that our Neural Resizer plays a role as a magnifier to F-PDLS which puts importance on minor and ambiguous samples.
- Finally, we show a performance comparison with some of the state-of-the-art works with respect to the date when the paper was written in table 4.

Qualitative

- To visually deliver the efficacy of our model, we also show some output examples of the Neural Resizer.
- The images show that our framework successfully captures fine-grained features like the line of the wrinkles compared to the deterministic interpolation approaches.
- That is, image shape is not notably changed, but the edges of the discriminant features are more conspicuously accented which facilitates the classification process.

Table 1: Comparison with various state-of-the-art smallsized Transformers on FERPlus, tested with sole backbone architecture and ours

Models	CE + Vanilla	F-
ViT [12]	88.84	
DeiT [41]	88.00	
ConViT [9]	88.12	
XCiT [13]	88.22	
Swin-S	88.69	

Table 3: Comparison across the effect of the loss function tested on both Vanilla Swin-T and Proposed architecture with Swin-B

Loss	Vanilla
Cross-Entropy	88.72
PDLS [43]	88.69
F-PDLS (ours)	88.78

Figure 3: Example of the trainable resizer output. First row : the result of deterministic resizer(e.g, bilinear interpolation), the proposed trained resizer and the absolute difference between (a) and (b) from the left. Second row: More examples of the difference.

b. F-PDLS (Focal Prior Distribution Label Smoothing)

• Assuming less data for a class implies harder classification difficulty, we adopt Focal Loss [2] perspective used in detection to alleviate class imbalance, for our loss function, extending the

 $L_{PDLS} = -\sum_{c \in C} (t_c * \alpha + d_{kc} * (1 - \alpha)) * \log(\sigma(z_c))$ $L_{F-PDLS} = -\sum_{c \in C} ((1 - \sigma(z_c))^{\gamma} * L_{PDLS})$

[1] Learning to Resize Images for Computer Vision Tasks, Hossein Talebi, Peyman Milanfar, 2021 [2] Focal Loss for Dense Object Detection, Tsung-Yi Lin et al. 2017

[3] Pyramid With Super Resolution for In-the-Wild Facial Expression Recognition, TH Vo et al. 2020

F-PDLS + Proposed 88.87 88.09 88.53 88.81 89.28

Proposed 88.87 88.91 **89.50**

Table 2: Ablation study on the effect of each module, when downscaling and upscaling images, tested with Swin-S, on FERPlus, using F-PDLS

Setting	model	STN	Up.	Down.	Acc.
а	Swin-S	-	Bi.	-	88.69
b	Swin-S	-	Bi.	LTR	88.53
с	Swin-S	-	SR	Bi.	89.03
d	Swin-S	-	SR	LTR	89.28
е	Swin-B	\checkmark	SR	LTR	89.50

Table 4: Comparison with other state-of-the-art methods for In-the-wild FER task. * denotes accuracy trained with Swin-Large

Туре	Method	FERPlus	RAF-DB
	RAN [45]	89.16	86.90
CNN	SCN [44]	89.35	88.14
	PSR [43]	89.75	88.98
	LBP + CVT [32]	88.81	88.14
Tuanafarman	MVT [24]	88.88	87.03
Transformer	VIT + SE [2]	-	86.18
	ours	89.50	88.57 *

Conclusion

- 1. We propose a novel training framework to leverage Transformer under the realistic FER with Neural Resizer and F-PDLS.
- 2. We experimentally show our framework with loss function to improve the performance of Transformer variants in general.
- 3. We further show that Swin-Transformer achieves competitive results compared to the strong baseline.

Code: https://github.com/hbin0701/VT_with_NR_for_FER