o o . . . Paper ID: 1683
Vision Transtormer Equipped with Neural Resizer

on Facial Expression Recognition Task

KAIST

NCRYL
Hyeonbin Hwang!, Soyeon Kim!, Wei-Jin Park?, Jiho Seo?, Kyungtae Ko?, Hyeon Yeo!

KAIST, Republic of Korea!
ACRYL, Republic of Korea?

-

Facial Expression Recognition (FER) Task Proposed Framework

Objective: classify expression on face images into several categories. a. Neural Resizer b. F-PDLS (Focal Prior Distribution Label Smoothing)

Dataset Type: "In the Lab” (ITL) vs “In the Wild"” (ITW)

Inspired by [1], we propose a data-driven learnable resizer instead of conventional deterministic Interpolation = Assuming less data for a class implies harder classification difficulty, we adopt Focal Loss [2]

- methods. perspective used in detection to alleviate class imbalance, for our loss function, extending the

While [1] applies learnable resizer for CNN and downscaling only, our module super-resolutions the input
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work in [3].
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- image, and after downsizes the image according to the ViT input size.
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Figure 2: Comparison between the FER-2013 and EmotiW datasets. Top row: original size of the FER-2013 datasct (48x48 pixels). it ST T ER bl < " ® : ceC
Middlc row: upsampled FER-2013 dataset to 256 x 256 pixcls. Bottom row: EmotiVV dataset (256 x 256 pixels). g 7 Downscal led \ = ’ 0.05
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- Occlusion, Pose, etc. [1] Learning to Resize Images for Computer Vision Tasks, Hossein Talebi, Peyman Milanfar, 2021

- Generally Low and Non-uniform Image resolution

[2] Focal Loss for Dense Object Detection, Tsung-Yi Lin et al. 2017
\\ [3] Pyramid With Super Resolution for In-the-Wild Facial Expression Recognition, TH Vo et al. zozo/
2. Annotator’s subjectivity on emotion classification / \

- Class ambiguity — no clear/gold standard.

Key Q U e St i 0 n S \ Re S U It S Table 2: Ablation study on the effect of each module, when

- Data imbalance
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