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ABSTRACT

Event detection is challenging in real-world application
since new events continually occur and old events still exist
which may result in repeated labeling for old events. There-
fore, incremental event detection is essential where a model
continuously learns new events and meanwhile prevents per-
formance from degrading on old events. Although existing
incremental event detection models achieve impressive per-
formance, they face the data imbalance problem between old
classes and new classes, and have the knowledge transfer prob-
lem which cannot adequately utilize the knowledge provided
by the previous model and data. To this end, we propose a
Balance-Normalization-Uncertainty (BNU) model to address
above problems. Specifically, in order to mitigate the adverse
effects of data imbalance, we incorporate a balanced fine-
tuning stage and a cosine normalization module. Meanwhile,
we consider aleatoric uncertainty to preserve previous knowl-
edge while training for new events. Experimental results show
that our proposed method resolves the above challenges effec-
tively and achieves consistent and significant performance on
ACE and TAC KBP datasets.

Index Terms— Incremental Learning, Event Detection,
Balanced Fine-tuning, Cosine Normalization, Uncertainty.

1. INTRODUCTION

Event detection (ED) aims to detect event triggers from
sentences and classify them into specific types. For example,
Death event triggered by “execute” should be detected in the
following sentence: Some 30 policemen were captured, tied
up and executed in cold blood against the walls.

Until now, ED is limited in practical applications since
new events continuously occur and old events still exist in
the real world. An ideal model needs to not only learn new
events incrementally but also prevent the model performance
from degrading on old events. The simplest solution is to add
new events into training dataset and retrain the model from
scratch with updated data. However, it is impractical due to
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high requirements for computing resources. Another option
is to label old events contained in new event data, but this
procedure is time-consuming for repetitively labeling.

Therefore, incremental event detection is required to ad-
dress the multiple event problem. A straightforward method
for incremental ED is to optimize the model on new event data,
but after the adaptation to the new training set, the model usu-
ally achieves poor performance on old events, which is called
catastrophic forgetting [1, 2, 3]. Recently, many complicated
methods have been developed to avoid catastrophic forgetting.
One common way is to maintain significant parameters of the
old model that is trained on previous classes [4, 5, 6]. Another
way is to reserve some representative examples in each old
class and retrains the model on it [7, 8, 9, 10]. The state-of-the-
art method KCN [8] for incremental ED belongs to the latter
way, but faces two issues. (i) Imbalance Problem: the train-
ing set size of old events is much smaller than the new event
data, which results in bias for the new event; (ii) Knowledge
Transfer: it can not effectively utilize the knowledge from old
event data.

To address the aforementioned challenges, we propose a
Balance-Normalization-Uncertainty (BNU) model, which is
shown in Figure 1. To reduce the adverse effect of the im-
balance problem, we introduce a balanced fine-tuning stage
and a cosine normalization module, which constrains the bias
for new data. To confine the knowledge transfer problem, we
consider an aleatoric uncertainty loss to transfer information of
the previous model to the current model which represents how
much the model is uncertain about the prediction due to the
data. We evaluate our method on ACE and TAC KBP datasets.
Experiments show that our BNU model can significantly im-
prove the performance on both benchmarks.

Our main contributions are as follows:

• We propose a novel model BNU to address the data
imbalance and the knowledge transfer problems for in-
cremental ED.

• To mitigate the adverse effects of data imbalance, we
introduce balanced fine-tuning and cosine normalization.
Meanwhile, we consider an aleatoric uncertainty loss to
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Fig. 1: Illustration of our Balance-Normalization-Uncertainty (BNU) model.

alleviate the knowledge transfer problem.
• Experimental results show that our model can achieve

consistent and significant improvements on ACE and
TAC KBP datasets.

2. THE PROPOSED METHOD

2.1. Problem Formalization
ED aims to detect an event triggered by an event trigger

which is a word or phrase in sentences. As described above,
new events continually occur and old events still exist. There-
fore, a practical ED method should adapt to the incremental
learning scenario. We formulate incremental ED as a sequence
tagging task. To be specific, given an input sequence, the ED
method labels each token in the sequence with pre-defined
event classes. Formally, given a model trained on an old
dataset Zo = {Z1,Z2, ...,Zn−1}, we aims to learn a unified
method for both old event classes Zo and new event class Zn,
based on a new dataset Z = Ẑo ∪ Zn, where Zi represents the
i-th event class set. Z is a large dataset that covers the new
event set Zn, meanwhile Ẑo ∈ Zo reserves a small quantity of
representative old event samples. After training the first n-th
events, we evaluate the model on the test dataset that contains
all old event classes.
2.2. BNU Model

To address above challenges, we propose a Balance-
Normalization-Uncertainty (BNU) model for incremental ED.
BNU consists of four important modules as follows.

Event Trigger Extractor. Recently, pre-trained language
models, such as BERT [11] and RoBERTa [12], have shown
impressive performance in many NLP tasks [13, 14]. In this
work, we select BERT as encoder since it is pre-trained on a
large amount of unlabeled corpus and shows strong ability in
language representation and understanding. Given an updated
dataset Z = {(si, yi), 1 ≤ i ≤M}, where M is the number
of labeled sentences, si = {wi,1, ..., wi,Ni} is a sentence with
Ni words, and yi = {yi,1, ..., yi,Ni

} is the sequence of labels.

For each example, we feed it into BERT and add a multi-
perception layer on BERT to acquire the predicted score ŷi,j .
Finally, the objective function of the event trigger extractor is
formulated as:

Led = −
1

|M |
1

|Nj |

M∑
i=1

Nj∑
j=1

yi,j log(ŷi,j) (1)

Following [15, 8], we utilize a hierarchical distillation (i.e.,
feature-level and prediction-level distillations) for incremental
ED since knowledge distillation is a common way to allevi-
ate forgetting of the previous knowledge. The feature-level
distillation loss function is formulated as:

Lfl =
1

|M |

M∑
i=1

Nj∑
j=1

1− 〈f̂i,j , fi,j〉 (2)

where f̂i,j and fi,j are l2-normalized features extracted by pre-
vious model and current model, and 〈f̂i,j , fi,j〉 means cosine
similarity. We compute prediction-level distillation loss as
follows:

Lpl = −
1

|M |

M∑
i=1

Nj∑
j=1

n−1∑
z=1

τ̂i,j,zlog(τi,j,z), (3)

τ̂i,j,z =
ep̂i,j,z/T∑n−1
q=1 e

p̂i,j,q/T
, τi,j,z =

epi,j,z/T∑n−1
q=1 e

pi,j,q/T
, (4)

pi,j,z = θTz fi,j + bz, p̂i,j,z = θ̂Tz f̂i,j + b̂z (5)

where p̂i,j,z and pi,j,z are the output logits (i.e., the outputs
before softmax) of the previous and current model for the j-th
token, respectively. n− 1 represents the number of observed
event classes in the old model and T is the temperature scalar.

Balanced Fine-tuning. Although reserving a small
amount of old class data is helpful for incremental learn-
ing, the number of old class samples is smaller than that of
the new class samples, which may bias the model towards the
new class. To deal with this unbalanced training scenario, we
introduce a balanced fine-tuning [16] stage with a balanced
set of samples that has the same number of representative



examples for peer class, including old and new event classes.
To select representative examples, we first compute the mean
representation of each class:

xu =
1

|Qu|

Qu∑
i=1

si (6)

where Qu is the total number of the u-th class set and si is the
representation of the i-th sentence belonging to the u-th class.
In this work, we utilize the representation of [CLS] token as the
sentence representation. We then rank all examples according
to their distances to the mean representation, and select the
first w examples as the representative samples for each class.

Cosine Normalization. Besides balanced fine-tuning, we
further introduce a cosine normalization module, which is
inspired by [16], to address the imbalance problems further. As
described in event trigger extractor, the predicted probability
of ŷi,j is computed as follows:

ŷi,j =
eθ

T
z fi,j+bz∑n−1

z=1 e
θTz fi,j+bz

(7)

where θ and b are the weights and the bias vectors in the
last layer, respectively. However, because of the imbalance
problem, the magnitudes of the embedding and the biases for
the new class are significantly higher than those for the old
classes, which results in the bias for the new class. Therefore,
we introduce cosine normalization in the last layer:

ŷi,j =
eη〈θ

∗
z ,f

∗
i,j〉∑n−1

z=1 e
η〈θ∗z ,f∗

i,j〉
(8)

where v∗ = v/ ‖v‖2 denotes the l2-normalized vector. The
learnable scalar η controls the range of softmax distribution
since the 〈v∗1 , v∗2〉 is in range of [−1, 1].

After the cosine normalization, the scores before softmax
in the last layer can mimic the scores after softmax for two
reasons. First, due to cosine normalization, the scores before
softmax are range in [−1, 1] which is the same range as the
scores after softmax. Second, the old and new models have
different scalars η. Therefore, the prediction-level distillation
loss in Eq. 3 can be updated as:

L∗pl = −
n−1∑
z=1

∥∥∥〈θ∗z , f∗i,j〉 − 〈θ̂∗z , f̂∗i,j〉∥∥∥ . (9)

Aleatoric Uncertainty. The objective of incremental
learning is to preserve the information of old classes while
training for the new class. We introduce an aleatoric uncer-
tainty loss to further transfer the information of old classes
to the new model. The aleatoric uncertainty describes the
uncertainty of model prediction caused by the data. Thus,
data uncertainty of the old model should be similar to the
new model as much as possible. In this work, we utilize a
linear layer to compute aleatoric uncertainty followed by the
encoder. Finally, we define the aleatoric distillation loss Lu as
follows:

Lau =

n−1∑
i=1

∥∥∥(σo,i)2 − (σn,i)
2
∥∥∥2 (10)

where σo,i and σn,i are the aleatoric uncertainty of previous
model and current model. n − 1 represents the number of
observed event classes in the old model.

Total Loss. Combining the losses presented above, the
final objective function is formulated as:

L = Led + Lfl + L∗pl + Lau. (11)

Based on the balanced fine-tuning module and cosine nor-
malization module, our method effectively addresses the data
imbalance problem. Meanwhile, aleatoric uncertainty loss
alleviates the knowledge transfer challenge.

3. EXPERIMENTS

3.1. Datasets and Evaluation
We evaluate our model on the ACE 20051 and TAC KBP

20172 datasets. Following the previous work [8], we select
the top 10 event classes according to their frequency, and split
them into different sets. Meanwhile, for the TAC KBP dataset,
we also utilize the top 10 event classes for the incremental ED
task. We employ Average F1 score and Whole F1 score as
evaluation metrics [8]. Average F1 score means the average
F1 scores of all classes (i.e., 1

k

∑k
i=1 F1i), and Whole F1

represents the F1 score on the all observed event classes. We
select 10 and 50 representative examples from each event class
into memory on the ACE 2005 dataset and the TAC KBP
dataset, respectively.

3.2. Baselines
We compare our method with the following baselines:

Finetune: The method only finetunes the pre-trained model
on new data. EWC [3]: This is a parameter-based method,
which reserves the optimal parameters of the previous model
while training for new classes. LwF [17]: The method uses
new class data to train the model while preserving the original
capabilities for incremental learning. EMR [18]: The method
reserves a few representative examples of old classes, and com-
bines them with examples of the new class to continue training.
KCN [8]: The method proposes a hierarchical distillation
module to alleviate catastrophic forgetting. UpperBound:
The model is trained on training examples of all observed
event classes, which can achieve the best performance because
of optimizing the model on all observed sets.

3.3. Overall Results
The F1 scores on ACE and TAC KBP datasets are shown in

Figure 2. We also list the average F1 and Whole F1 in Table 1.
From the results, we can observe that 1) Our method achieves
significant improvement over all baselines. For example, BNU
achieves 4.52% and 5.08% improvement in whole F1 on ACE
and TAC KBP datasets, respectively, compared with a compet-
itive model KCN, which indicates that our proposed method
BNU is effective for incremental ED; 2) Another interesting
observation is that the performance of models tends to decline

1https://catalog.ldc.upenn.edu/LDC2006T06
2https://tac.nist.gov/2017/KBP/data. html
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Fig. 2: The performance on the ACE (a) and TAC KBP (b) datasets. Our method achieves better performance than other models.

since the difficulty increases as the number of event classes
increases.

Table 1: The average F1 (%) on all obversed classes (“Ave”),
and whole F1 (%) on the whole test datset (“Whole”).

Method
ACE TAC KBP

Ave Whole Ave Whole
Finetune 26.92 8.21 24.26 7.56
EWC [3] 31.41 10.06 27.94 13.68
LwF [17] 53.79 27.78 31.87 15.42
EMR [18] 63.83 52.43 34.71 16.93
KCN [8] 68.39 56.71 41.76 22.66
BNU (Ours) 71.81 61.23 44.35 27.74

3.4. Discussion

Ablation experiment. We remove balanced fine-tuning
(BF), cosine normalization (CN), and aleatoric uncertainty
(AU) respectively to evaluate the effectiveness of each module.
The detailed results are reported in Table 2. We can find that
removing any module brings performance degradation, which
demonstrates the effectiveness of each module for incremental
ED task.

Table 2: Ablation studies by removing BF, CN, and AU.

Model
ACE KBP

Avg Whole Avg Whole
BNU (Ours) 71.81 61.23 44.35 27.74
w/o BF 70.29 60.30 43.04 26.47
w/o CN 71.05 59.74 42.23 25.38
w/o AU 70.71 59.62 43.35 25.76

The effect of the number of reserved samples. We com-
pare our method BNU with method KCN on the ACE dataset.
Table 3 shows the effect of the number of reserved samples
in each class. We can find that with the number of reserved
samples increase, the performance of KCN and our BNU be-
come better. In each size, the performance of BNU is superior
to KCN, which again indicates the effectiveness of our BNU.

Comparison with semi-supervised scenario. To further
verify the effectiveness and practicability of our model, we

Fig. 3: Comparison of the proposed method with the semi-
supervised setting. “Semi” is the semi-supervised setting.

compare our BNU with the semi-supervised scenario. Since
only new event class is labeled in the new class set, we use a
previously trained model to predict the presence of old events,
and train the model with the set annotated with old and new
event classes. From Figure 3, we observed that our method
is significantly superior to the semi-supervised setting which
demonstrates our BNU is much more practical for ED.

Table 3: The effect of the number of reserved samples.

Size
BNU (Ours) KCN

Avg Whole Avg Whole
10 71.81 61.23 68.39 56.71
20 73.65 63.86 69.88 58.43
30 75.04 65.46 71.21 59.28
40 75.57 66.07 72.03 61.24
50 76.14 66.79 72.87 61.95

4. CONCLUSION

In this paper, we propose a BNU model to address data
imbalance and knowledge transfer problems in incremental
ED task. To alleviate the imbalance problem, we incorpo-
rate the balanced fine-tuning stage and cosine normalization.
To transfer the previous knowledge into the current model,
aleatoric uncertainty loss is carefully introduced. Experimen-
tal results demonstrate that our model outperform previous
state-of-the-art methods by a substantial margin.
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