

TRANSFORM DOMAIN TEMPORAL PREDICTION WITH EXTENDED BLOCKS

SHUNYAO LI, TEJASWI NANJUNDASWAMY and KENNETH ROSE SIGNAL COMPRESSION LAB, ECE DEPARTMENT, UNIVERSITY OF CALIFORNIA, SANTA BARBARA

CONTRIBUTION

 We propose the EB-TDTP method to fully account for the TDTP interference with sub-pixel interpolation filter, and spatial correlations outside the reference block boundary.

BACKGROUND: TDTP

- Traditional inter prediction copies pixels one-by-one, which is suboptimal because it ignores spatial correlation
- Transform Domain Temporal Prediction (TDTP): DCT (largely) achieves spatial decorrelation, enabling optimal one-to-one prediction in DCT domain

					n			1				я					
	DCT	Do	mai	n 🔼	t lo	w fre	que	ncy,	$\rho \approx$	1							
	1497	-2	-33	-4	-21	81	14	0		1505	1	-44	-10	-47	41	29	-15
	229	-10	64	52	1	-70	-26	2		230	-11	62	50	51	-40	-34	19
	8	47	-70	-146	39	-15	1	5		-41	38	-53	-136	-9	-8	14	-15
_	-136	-38	18	130	-35	69	20	-4		-110	-39	24	143	-32	44	19	5
	78	-2	39	-17	10	-54	-30	8		80	1	26	-3	46	-33	-50	8
	43	17	-46	-82	-6	-20	19	4		0	23	-44	-82	-30	4	42	-10
	-25	1	15	37	-10	35	-12	-5		1	-8	21	29	4	10	-10	7
	-6	2	4	6	2	-17	5	1		-1	-2	-3	3	8	-12	-7	-2

At high frequency, $\rho < 1$

- Temporal correlation ρ in pixel domain is dominated by the low frequencies ($\rho \approx$ 1), inspiring the traditional pixel copying prediction
- TDTP: Accounts for variation in temporal correlation across frequency, which is hidden in pixel domain
- The optimal TDTP predictor for each transform domain coefficient is given by,

$$\tilde{\mathbf{x}}_n = \rho \hat{\mathbf{x}}_{n-1}$$

• The optimal prediction coefficient is the temporal correlation coefficient, assuming $\hat{x}_n \approx x_n$

$$\rho = \frac{E(x_n \hat{x}_{n-1})}{E(\hat{x}_{n-1}^2)}$$

CHALLENGE

- TDTP: scales the DCT coefficients by ρ , where at low frequencies $\rho\approx$ 1, and at high frequencies $\rho<$ 1
- Interferes with the low-pass sub-pixel interpolation filters, which has similar frequency response

EB-TDTP

• TDTP did not completely dis-entangle spatial and temporal correlation, and ignored the correlation outside the block.

- Proposed: Extended blocks TDTP (EB-TDTP)
- First get the extended reference block with all the neighbor information, de-correlate the spatial correlation using DCT, design the prediction coefficients for each DCT coefficient, then follow the standard sub-pixel interpolation procedure to get the final prediction.
- The prediction coefficients P_{B_2} is designed to optimize the final prediction error, which can be converted to a linear optimization problem.

Asymptotic Closed-Loop (ACL) Design

- Introducing a new predictor results in different statistics, which will propagate and grow over frames through the closed loop video coding operation.
- This deviation in statistics between design and operation makes an effective off-line training impossible.

 Thus we use the asymptotic closed-loop (ACL) design approach for training the predictor.

EXPERIMENTAL RESULTS

• The proposed approach was implemented in HM 14.0. Both prediction size and transform size are restricted to 8x8, and the motion search is at half-pixel precision.

Coastguard	8.69%	10.61%			
Mobile	11.91%	12.91%			
Highway	3.05%	5.44%			
Waterfall	9.88%	10.16%			
Bus	5.95%	6.70%			
Tempete	5.78%	6.19%			
RaceHorse	3.48%	4.32%			

Reduction in BD rate over HEVC by employing TDTP and EB-TDTP