

BACKGROUND – MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

- > Minimizes an empirical estimate of the Kullback-Leibler divergence (KLD). > Asymptotically efficient at the true model.
- \succ Highly sensitive to outliers when the hypothesized score function is unbounded.

ROBUST MLE ALTERNATIVES

- \succ Minimum Helinger distance estimator (MHDE [1]), minimum α , β and γ divergence estimators (M α DE [2], M β DE [3] and M γ DE [4]).
- > Mitigate the effect of distant outliers via density power weights.
- \succ MHDE requires consistency of Parzen's non-parametric density estimator.
- \succ M β DE, M γ DE and MHDE often necessitate multivariate numerical integration under flexible distributional models.
- Consistency may be lost under the power density transform in the M α DE.

PROPOSED APPROACH

- \succ We propose a new divergence, called \mathcal{K} -divergence.
- > Applies non-parametric weighting to the hypothesized log-likelihood function.
- \succ Avoids the use of density powers \Rightarrow Simple implementation.
- > Unlike the MHDE, the resulting estimator **do not require consistency of Parzen's non-parametric density estimator.**

THE \mathcal{K} -DIVERGENCE

> The \mathcal{K} -divergence between probability distributions G and F with pdf's $g(\cdot)$ and $f(\cdot)$, respectively:

$$\mathcal{K}_h[G||F] \triangleq E\left[\psi_G(\mathbf{x},h)\log\frac{g(x)}{f(x)};G\right] + \log E[\psi_G(\mathbf{x},h)]$$

where

$$\psi_G(\mathbf{x},h) \triangleq \frac{(K_h * g)(\mathbf{r})}{E[(K_h * g)(\mathbf{x});G]}, \quad (K_h * g)(\mathbf{r}) \triangleq \int_{\mathbb{R}^p} K_h(\mathbf{r} - \mathbf{s})$$

and $K_h(\mathbf{r}) \triangleq h^{-p} K(h^{-1}\mathbf{r})$, $K(\mathbf{r})$ is a strictly positive, bounded, integrable and continuous kernel function such that $\int_{\mathbb{R}^p} K(\mathbf{r}) d\lambda(\mathbf{r}) = 1$ and $h \in \mathbb{R}_{++}$ is a bandwidth parameter.

Theorem 1 (Non-negativity) $\mathcal{K}_h[G||F] \ge 0$, when equality holds if and only if G = F.

THE MINIMUM \mathcal{K} -DIVERGENCE ESTIMATOR (M \mathcal{K} DE)

 \succ Consider a parametric family of probability distributions $\{F_{\theta}\}$ and sequence of i.i.d samples $\{\mathbf{x}_n\}_{n=1}^N$ from G, the MKDE

$$\widehat{\mathbf{\theta}}_h \triangleq \arg \max_{\mathbf{\theta} \in \mathbf{\Theta}} J_h(\mathbf{\theta})$$

where

$$J_h(\mathbf{\theta}) \triangleq \sum_{n=1}^N w(\mathbf{x}_n, h) \log f(\mathbf{x}_n; \mathbf{\theta}) - \int_{\mathbb{R}^p} \hat{g}(\mathbf{r}; h) f(\mathbf{r}; \mathbf{\theta})$$

$$\hat{g}(\mathbf{r};h) \triangleq N^{-1} \sum_{n=1}^{N} K_h(\mathbf{r} - \mathbf{x}_n)$$
 - Parzen's kernel density

$$w(\mathbf{r};h) \triangleq \tilde{g}(\mathbf{r};h) / \sum_{n=1}^{N} \tilde{g}(\mathbf{x}_{n};h) \text{ and } \tilde{g}(\mathbf{r};h) \triangleq \hat{g}(\mathbf{r};h)$$

ROBUST PARAMETER ESTIMATION BASED ON THE K-DIVERGENCE

Yair Sorek and Koby Todros

School of ECE, Ben-Gurion University of the Negev

i); F]

 $g(\mathbf{s})d\lambda(\mathbf{r})$

 $\boldsymbol{\theta}$) $d\lambda(\mathbf{r})$,

y estimator,

 $-N^{-1}K_{h}(\mathbf{0}).$

THE MINIMUM \mathcal{K} -DIVERGENCE ESTIMATOR (M \mathcal{K} DE)

Remark

 $\succ \ \widehat{\mathbf{\theta}}_h \rightarrow \text{MLE as } h \rightarrow \infty.$

The integral term comprising $J_h(\theta)$ has analytical solution whenever the convolution $(K_h * f)(\mathbf{r}; \boldsymbol{\theta})$ can be computed, e.g., when the assumed distribution is GMM and $K_h(\mathbf{r})$ is Gaussian.

ASYMPTOTIC PERFORMANCE ANALYSIS

Theorem 2 (Consistency)

Under some regularity conditions

$$\hat{\boldsymbol{\theta}}_{h} \xrightarrow{p} \boldsymbol{\theta}_{h}^{*}$$

where $\boldsymbol{\theta}_{h}^{*} \triangleq \arg\min_{\boldsymbol{\theta}} \mathcal{K}_{h}[G||F_{\boldsymbol{\theta}}]$

Conclusion (Consistency at the true model) When $G = F_{\theta_0}$ and $\{F_{\theta}\}$ is identifiable:

 $\hat{\boldsymbol{\theta}}_{h} \xrightarrow{p} \boldsymbol{\theta}_{0}$

Theorem 3 (Asymptotic normality and unbiasedness) Under some regularity conditions

 $\sqrt{N}\left(\hat{\boldsymbol{\theta}}_{h}-\boldsymbol{\theta}_{h}^{*}\right) \xrightarrow{d} N\left(\boldsymbol{0},\boldsymbol{\Sigma}\left(\boldsymbol{\theta}_{h}^{*},h\right)\right)$

Conclusion (Asymptotic efficiency at the true model) When $G = F_{\theta_0}$, the asymptotic MSE \rightarrow Cramér-Rao lower bound as $h \rightarrow \infty$. BANDWIDTH PARAMETER SELECTION

> A lower bound on the asymptotic weighted MSE:

$$E\left[\left\|\hat{\boldsymbol{\theta}}_{h}-\boldsymbol{\theta}_{0}\right\|_{\mathbf{W}}^{2};G\right]\overset{a}{\approx}\operatorname{tr}\left[\mathbf{R}\left(\boldsymbol{\theta}_{h}^{*},h\right)\mathbf{W}\right]+\left\|\boldsymbol{\theta}_{0}-\boldsymbol{\theta}_{0}\right\|_{\mathbf{W}}^{2}$$

where $\mathbf{R}(\mathbf{\theta}_{h}^{*}, h) = N^{-1} \mathbf{\Sigma}(\mathbf{\theta}_{h}^{*}, h)$ and W is a positive-semidefinite weight matrix.

> The optimal bandwidth parameter minimizes an empirical estimate of the lower bound obtained from the data sample $\{\mathbf{x}_n\}_{n=1}^N$

 $h_{\text{opt}} = \arg\min \operatorname{tr}\left[\hat{\mathbf{R}}(\hat{\mathbf{\theta}}_h, h)\mathbf{W}\right]$

EXAMPLE-SETTINGS

 \triangleright We consider Huber's ε -contamination model:

 $G = (1 - \varepsilon)F_{\theta_0} + \varepsilon Q$

where Q is a contaminating distribution, selected here to be Gaussian. > The p.d.f of the nominal distribution F_{θ} :

$$f(\mathbf{r};\boldsymbol{\theta}) \triangleq \frac{1}{2} \phi(\mathbf{r};\boldsymbol{\theta},\sigma^2 \mathbf{I}_p) + \frac{1}{2} \phi(\mathbf{r};\boldsymbol{\eta},\sigma^2 \mathbf{I}_p)$$

where $\boldsymbol{\Theta} \triangleq [\boldsymbol{\eta}^T, \sigma^2]^T, \boldsymbol{\eta}$ is the parameter of interest and σ^2 is a nuisance parameter.

- statistics, vol. 5, no. 3, pp. 445-463, 1977.

R. Beran, "Minimum Helinger distance estimates for parametric models," *The Annals of*

A. Iqbal and A-K. Seghouane, "An α -divergence-based approach for robust dictionary" learning," IEEE Transactions on Image Processing, vol. 28, no. 11, pp. 5729-5739, 2019. A. Basu, I. R. Harris, N. L. Hjort and M. C. Jones, "Robust and efficient estimation by minimising a density power divergence," *Biometrika*, vol. 85, no. 3, pp. 549-559, 1998. H. Fujisawa and S. Eguchi, "Robust parameter estimation with a small bias against heavy contamination," Journal of Multivariate Analysis, vol. 99, no. 9, pp. 2053-2081, 2008.