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Introduction and background: Complexity

• Structural complexity is a key feature for characterizing the prop-
erties of nonlinear dynamic and chaotic systems.

• Traditionally, the loss of complexity is manifested as the de-
crease of randomness and irregularity, according to information
theory (COSTA; PENG; GOLDBERGER, 2008).

• In line with the traditional Complexity Loss Theory, the highest
degree of complexity indicates normal and healthy condition in
physical and physiological systems (LIPSITZ; GOLDBERGER, 1992).

• New theory has been proposed that pathology exhibits an in-
crease in self-correlated complexity, that is, structural complex-
ity (CHANWIMALUEANG; MANDIC, 2017).
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Introduction and background: Complexity

• Analysis methods of complex dynamics:
• Entropy (SHANNON, 1948);
• Recurrence Plots (JR; ZBILUT, 1994);
• Fractal Dimension (HIGUCHI, 1988);
• Detrended Fluctuation Analysis (HAUSDORFF et al., 1997);

• Among existing approaches, entropy-based methods are the
commonly investigated considering its following advantages (WANG;
SI; LI, 2020; WANG; SI; LI, 2021):

• independence on prior knowledge;
• without requirement of pre-processing procedures;
• easy implementation;
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Introduction and background: Entropy

Figure 1: Complexity-Entropy curves
(https://medium.com/swlh/what-is-
entropy-an-exploration-of-life-time-
and-immortality-85488e1eea36)

Traditional entropymeasures, such
as Sample Entropy and its en-
hanced versions, are designed to
give a quantification of irregular-
ity. However, several problems
exist:
• shortage of sample points;
• reduced stability for multi-
channel analysis;

• limited selection of embed-
ding dimension;

• unknownoptimal scaleswhen
examining long-term corre-
lation.
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Aims and Objectives

• Extend the single channel Cosine Similarity Entropy
(CHANWIMALUEANG; MANDIC, 2017) to cater for multichannel
data, via Multivariate Multiscale Cosine Similarity Entropy (MM-
CSE).

• Explore the property of self-correlation and structural complex-
ity at low scales based on MMCSE.

• Examine and compare the performance of the proposed Mul-
tivariate Multiscale Cosine Similarity Entropy (MMCSE) and the
standardMultivariateMultiscale Sample Entropy (MMSE) (AHMED;
MANDIC, 2011) on physical signals.
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Algorithm

1. Normalize the original multi-variate data sets by subtracting the
median.

2. Perform the Coarse Graining process to obtain the scaled multi-
channel time series {y(τ)k,i }

N/τ
j=1 , according to

y(τ)k,i (j) =
1
τ

j+τ/2−1∑
i=j−τ/2−1

xk(i), 1 ≤ j ≤ N
τ
, k = 1, 2, . . . ,P.

3. Form the Composite Delay Vectors (CDVs), YM(i), according to the
embedding dimension, M, and time lag, L, in the form

YM(i) = [y1,i, y1,i+l1 , . . . , y1,i+(m1−1)l1),

y2,i, y2,i+l2 , . . . , y2,i+(m1−1)l2),

...
yp,i, yp,i+lp , . . . , yp,i+(m1−1)lp)]
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Algorithm

4. Calculate the angular distance between pairwise CDVs Ym(i) and
Ym(j) based on Cosine Similarity, that is,

dm(i, j) =
1
π
cos−1 (

ym(i) · ym(j)
|ym(i)||ym(j)|

), i ̸= j.

5. Compute the number of similar patterns defined as similar pairs,
BrM(i), that satisfy the criterion dM(i, j) ≤ r.

6. Compute the local probability of BrM(i) by CrM(i) =
BrM(i)
N−n−1 , where

n = max(M) ∗max(L).

7. Compute the global probability of BrM(i) as Φr
M =

∑N−n
i=1 CrM(i)
N−n .

8. Multivariate Multiscale Cosine Similarity Entropy is defined as

MMCSE(M, L, r,N) = −[Φr
M log2 Φ

r
M + (1− Φr

M) log2(1− Φr
M)].
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Selection of Tolerance, r
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Figure 2: Behaviour of the Multivariate Single-scale CSE on the estimation of
White Gaussian Noise (WGN), as a function of the tolerance, r.

• The right graph gives the tolerance, r, as a function of the number of
variates that rcse = −0.4(p−0.71) + 0.47, where p denotes the number of
variates.

• The selection of tolerance, r, in CSE is independent of the amplitude or
the the variance of the raw data.
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Selection of Embedding Dimension, m
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Figure 3: Multivariate Single-scale CSE as a function of
the embedding dimension, m.

The angular dis-
tance based Cosine
Similarity Entropy
exhibits an order of
magnitude higher
temporal resolution
in complexity esti-
mation compared
to standard Sample
Entropy.

Synthetic Signals:
• White Gaussian Noise (WGN)
• 1/f noise
• AR(1): x(t) = 0.9x(t− 1) + ε(t)

• AR(2): x(t) = 0.85x(t − 1) +

0.1x(t − 2) + ε(t), where ε ∼
N (0, 1)
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Effect of Data Length, N, on performance
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Figure 4: Multivariate Single-scale CSE as a function of the number of sample
points, N, evaluated for the same four synthetic models. The default param-
eters are set as m = 2, r = 0.287, and l = 1.

The angular-based CSE requiresmuch less sample points than the amplitude-
based SampEn, and this property is further highlighted and improved in the
multivariate case.
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Complexity profiles on synthetic data
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Figure 5: Complexity profiles of the MMSE and MMCSE algorithm.

The proposedMultivariate Multiscale Cosine Similarity Entropy yields
stable estimates at high temporal scales, thus making it possible to
examine structural complexity of physical processes with long-range
correlations.
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Performance of standard MMSE on gait dynamics
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Figure 6: Multivariate Multiscale Sample Entropy.

• Univariate MSE yields a
non-significant discrimi-
nation between the two
conditions.

• Multi-variate cases were
able to separate the
conditions only at large
scales, whereas the
constrained condition
wrongly suggested lower
complexity than the
uncorrelated randomized
signals.
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Performance of proposed MMCSE on gait dynamics
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Figure 7: Multivariate Multiscale Cosine Similarity Entropy.

• The constrained con-
dition exhibits less
structure than the
unconstrained condition.

• The Multivariate-MCSE
achieved a good struc-
ture separation of all real
signals from their ran-
domized versions, which
guarantees physically
meaningful estimation
for quantifying structural
complexity real world
signals.
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Conclusion

• This work has extended the univariate Cosine Similarity Entropy
(CSE) method to the multivariate case, to provide efficient quan-
tification of structural complexity of real world data.

• The proposed MMCSE method has been shown to exhibit a valid
estimation of the structure and long-term correlation present in
multichannel signals, with higher stability at large scales and an
order of magnitude lower requirement on data length compared
to the existing MMSE methods.

• The performance of MMCSE has been examined on four synthetic
benchmark signals as well as on real world stride dynamical
signals, with MMCSE showing an improved separation of con-
strained walking conditions from unconstrained conditions and
uncorrelated randomized time series.
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