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Main Questions and Answers

Q1) Are multi-modal models necessarily more robust than uni-modal models?
Answer: Not Necessarily. see Theorem 1.

Q2) How to efficiently measure the robustness of multi-modal learning?
Answer: Previous works only focused on point-wise robustness, we should
also look into class-wise robustness.

Q3) How to fuse different modalities to achieve a more robust multi-modal
model?

Answer: We propose multimodal mixup as a cheap alternative to adversarial
training.
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Our Approach

Audio Domain Video Domain

Theorem 1 There exists a sample x; € D, and a unimodal sample-
wise attack 3||0a:||lp < €a or J||évil|lp < ey that can break a
multimodal fusion network f((xv,i ® xa,i),yi), changing its pre-
diction label y;.

Adversarial Adversarial

Example / Example
(a)
X

X
B Emergency Vehicle

X

3= Centroid EEe

Here, D is the dataset, and €a and €y are the point-wise l
robustness threshold for each uni-modal of sample x;.

Therefore, as a conjecture, a unimodal attack can break Joint Embedding Space
a multimodal model, which we empirically verified the
existence of such cases in our experiments.

The proof of Theorem 1 can be found in the appendix
page.
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Figl. The overall architecture of the network studied (left) audio branch (right) video branch



Main Questions and Answers

Q1) Are multi-modal models necessarily more robust than uni-modal models?
Answer: Not Necessarily. see Theorem 1.

Q2) How to efficiently measure the robustness of multi-modal learning?
Answer: Previous works only focused on point-wise robustness, we should
also look into class-wise robustness.

Q3) How to fuse different modalities to achieve a more robust multi-modal
model?

Answer: We propose multimodal mixup as a cheap alternative to adversarial
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Class-wise Robustness Metric
(b)

Centroid-based Density Metric :

R_.,p,c Ne — Ny c

pe TP =
log(V, (Rp,c)) — log(Vy (Rrp,c))

In the equation, the numerator is the number of class samples whose l/o distance to centroid larger than T

quantile of samples in class c;
F{T,p,C is the T quantile of all class sample’s //o distance to the class’s centroid.

Intuitively, the density in the outer crust of a ball as is shown in Fig. 1(b) above.

Generally, the higher the density of the crust, the more robust the samples within/below the crust are.
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Class-wise Robustness Metric

Convexity-based Metric :
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For each class C in the dataset, we construct the convex set of
S ={x[x =6x+(1-6)x, 6 ~U[0,1], vx,,x, e C},

and sample n points from it {x, ..., X [x € S},

Adversarial

we set n =2000, where y_is the class label. Example
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Main Questions and Answers

Q3) How to fuse different modalities to achieve a more robust multi-modal
model?

Answer: e propose multimodal mixup as a cheap alternative to adversarial training.

We desire to augment the less convex classes of training data with more samples from the
“denser” samples which are closer to the center of its feature space.

We tune mixup temperature between audio and video samples according to empirical
threshold of the above-mentioned Density metric p and the Convexity metric Kq
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Results:

Table 1. Performance of our best
performing model on AudioSet, and
their performance against the
adversarial perturbation, using the
overall architecture shown in Fig 2.

Here, mAP is the mean average
precision, AUC is the area under the
false positive rate and true positive
rate.

The d-prime can be calculated from
AUC [1].

Al denotes adversarial training.

A red text color indicates the most
potent perturbation against the
model.

Models Attack mAP AUC d-prime
Audio UniModal (PANNS) [23] No 0.383 0.963 2.521
Audio UniModal Yes 0.183 0.895 1.770
Mid Fusion (G-blend) [14] No 0.427 0.971 2.686
Mid Fusion Yes A+V | 0.182 0.889 1.836
Mid Fusion Yes V-only | 0.339 0.954 2.441
Mid Fusion Yes A-only | 0.310 0.940 2.276
Mid Fusion mixup No 0.424 0.972 2.711
Mid Fusion mixup Yes A+V | 0.234 0.891 1.983
Mid Fusion AT No 0.397 0.964 2.530
Mid Fusion AT’ Yes A+V [ 0.199 0.900 1.861
Carnegie Mellon University

Language Technologies Institute
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Conclusion

1. Multimodal Networks are not always more robust than their
unimodal counterparts.

2. Our density and convexity metric could effectively measure
robustness of models in large-scale.

3. We propose multimodal mixup as an alternative to adversarial
training.

Thank you!




