CDX-Net: Cross-Domain Multi-Feature Fusion Modeling via Deep Neural Networks for Multivariate Time Series Forecasting in AIOps

Jiajia Li^{1,2}, Ling Dai^{1,2}, Feng Tan², Hui Shen³, Zikai Wang², Bin Sheng^{1,2,} Pengwei Hu⁴ ¹Department of Computer Science, Shanghai Jiao Tong University, Shanghai, China; ²Shanghai Artificial Intelligence Research Institute, Shanghai, China ³Di-Matrix Corporation, Shanghai, China; ⁴Merck China Innovation Hub, Shanghai, China

- . We improved the channel attention module reworked to reflect the channel weight distribution more comprehensively.
- We designed the feature fusion method based on the attention mechanism. Finally, we applied the model to the AIOps and achieved significant results.

$$\beta = AA'(x) \cdot c1 + AM'(x) \cdot (1 - c1)$$
 (6)

$$O(x) = I(x) \cdot Sigmoid(\beta) + I(x)$$
(7)

$$- a = Softmax(\theta^T \cdot \phi) \quad (8)$$
$$- \gamma = g \cdot a \qquad (9)$$

dimension number is half of the input. We use a 1x1 convolutional layer with batch normalization to expand the dimension number and reshape the feature map O to 128x240.

Experiments

Dataset

Table1. Excluding the data column, the overall properties of the dataset, where L is the length of the time series, D is the dimension number of time series, I is the sampling spacing, S is size of the dataset in bytes and Mean and Var are the dataset's mean and variance, respectively.

Features	Whole	Training	Validation	Testing
L	101583	60949	20317	20317
D	20	20	20	20
Ι	5 mins	$5 \mathrm{~mins}$	$5 \mathrm{~mins}$	$5 \mathrm{~mins}$
\mathbf{S}	13309 KB	$7957~\mathrm{KB}$	2665 KB	2687 KB
Mean	857.2778	804.7236	866.8692	1005.3438
Var	2678.4322	2498.7410	2670.6132	3158.5293

To validate our model, we collected the log data of the system in the year 2015 as a dataset, whose distribution and characteristics are shown in the Table 1 and our dataset has a total of 20 dimensions.

Settings ⁽) PyTorch ■

- Optimizer: Stochastic Gradient Descent (SGD)
- **Initial LR:** 0.001
- Weight decay: 0.0005
- **Momentum:** 0.9
- **Batch size:** 32
- **Epoch:** 30
- > LR decay: decayed by 0.5 every 5 epochs
- **Loss Function:** MSE loss
- ► Window Length: 96
- > Label Length :1
- Horizon Length: 1

Results

Visualization

Fig.7 A comparison between the prediction results and the true value from different models in different cases.

- > Move the gaze to the local position, our model predicts better when certain non-periodic and outliers (marked with ovals) appear in the time series
- CDX-Net provides better learning capability for the long- and short-term characteristics of historical data