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Motivation and contribution
I Water flow problem in water distribution networks

I Compute the water flow rates in all pipes and the water pressure at all nodes
I Nonlinear system of equations

I Fundamental task in water distribution network design and operation
[Mala-Jetmarova et al. ’17] [Fooladivanda-Taylor ’18] [Singh-Kekatos ’18]

and joint optimization of energy and water networks in smart cities
[Dall’Anese-Mancarella-Monti ’17] [Zamzam et al. ’18] [Li et al. ’18]

I Traditional solvers: Hardy-Cross, Newton-Raphson, Linear Theory Method

I Recent fixed-point method [Zhang et al. ’17]

I Improved convergence over industry standard (EPANET), but no analysis

I Existence/uniqueness of solution and algorithm convergence have been recognized
as crucial in the literature [Boulos-Altman-Liou ’93] [Todini ’06]

I Recent developments in fixed-point methods for power flow analysis

I 1-φ [Bolognani-Zampieri ’16] [Wang et al.’18]; 3-φ [Bazrafshan-Gatsis ’18], [Bernstein et al.’18]

I Uniqueness of solution in natural gas networks [Singh-Kekatos ’18]

I This paper: A fixed-point method for the water flow problem

I Local uniqueness of solution, convergence, and rate of convergence
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Water distribution network model

I Directed graph (N ,L)
I N = {0, . . . , N} is the set of N + 1 nodes

I Node 0 is a reservoir
I Rest of nodes are generically demands

I L = {1, . . . , L} is the set of L links: Pipes

I Hydraulic head at node n (proxy for pressure): hn
I Rate of water injection at node n: sn ≥ 0 for reservoir, sn ≤ 0 for junctions

I Rate of water flow in pipe `: q`
I Head loss across pipe ` (pressure drop due to friction): ~`

Hazen-Williams eq.: ~` := ~`(q`) = A`|q`|0.852q`

where A` is a constant that depends on the pipe characteristics

I Vectors s = {sn}n∈N+
; h = {hn}n∈N+

; sN = [s0, s
′]′; hN = [h0, h

′]′;
q = {q`}`∈L; ~ = {~`}`∈L; ~(q) = {~`(q`)}`∈L
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Continuity and energy equations

I Graph incidence matrix IN ∈ RN+1 × RL

[IN ]i,` =

{
+1, if ` is directed out of node i

−1, if ` is directed into node i

I Continuity equation: Rate of water injection into node n ∈ N equals the
total rate of water flowing out on the links connected to node n

sN = IN q (CE)

I Energy equation: Head at the upstream node is equal to the head at the
downstream node plus head losses occurring on the way

~(q) = I ′NhN (EE)
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The Water Flow Problem

I Reservoir maintains constant head h0

I Partition IN =
[
I′0
I

]
I I′0: Row corresponding to reservoir (node 0)

I The continuity and energy equations yield the Water Flow Equations:

s = Iq, (WFE-1)

~(q) = I ′h− I ′1Nh0 (WFE-2)

I Water Flow Problem: Given the reservoir head h0 and the injections s,
determine the flow rates on all links, q ∈ RL, and the total head at all
remaining nodes, h ∈ RN

I (WFE) is a system of L+N nonlinear equations
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Fixed-point map: Derivation (1)

I Suppose that all flows are bounded away from zero

I Notation: Diagonal matrix A = diag(A1, . . . , AL)

I diag(|q|−0.852) with entries |q`|−0.852 on the diagonal

I The Hazen-Williams eq. ~` = A`|q`|0.852q` is written as

q = A−1diag(|q|−0.852)~

I Introducing the latter in the WFE we obtain

s = Iq
~(q) = I ′h− I ′1Nh0

}
=⇒ s = [IA−1diag(|q|−0.852)I ′](h− 1Nh0)

Lemma

In a connected graph with nonzero flow rates, IA−1diag(|q|−0.852)I ′ is invertible.

Proof: The matrix is the weighted Laplacian of the graph and is pos. semidefinite

N. Gatsis Fixed-Point Method for Water Networks IEEE GlobalSIP ’18 6 / 12



Fixed-point map: Derivation (2)

I It follows from the previous lemma that

h− 1Nh0 =
[
IA−1diag(|q|−0.852)I ′

]−1
s

I Multiplying with I ′ and invoking WFE-2 yields

~ = I ′
[
IA−1diag(|q|−0.852)I ′

]−1
s

I Introducing the latter into the Hazen-Williams equation finally yields a
fixed-point map for the water flows q:

q = Ts(q)

where Ts(.) is parametrized by the injection vector s:

Ts(q) = A−1diag(|q|−0.852)I ′
[
IA−1diag(|q|−0.852)I ′

]−1
s
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Convergence

I Any flow vector q that solves the water flow problem satisfies q = Ts(q)
and vice versa

I Iterative method indexed by k = 1, 2, . . . initialized with q0

qk+1 = Ts(q
k)

Proposition
• Suppose that q∗ is a fixed-point of the map Ts(q), that is, q∗ = Ts(q

∗)

• Let J∗s = ∂Ts(q)
∂q |q=q∗ be the Jacobian of the map Ts(q) evaluated at q∗

• Let ρ(J∗s ) be the spectral radius of J∗s
á If ρ(J∗s ) < 1, then Ts(q) is locally a contraction map around q∗, and q∗ is a

locally unique fixed point

Proof: Based on Ostrowski Theorem [Ortega-Rheinboldt ’70]
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Discussion

I If all eigenvalues of J∗s have magnitude less than one, and the method is
initialized in a neighborhood of q∗, then convergence to q∗ is guaranteed

I The solution is unique in this neighborhood

I The proposition does not characterize the size of the neighborhood

I The contraction property characterizes the speed of convergence
I Distance between successive iterates decreases by a factor α ∈ (0, 1)

‖qk+1 − qk‖∞ ≤ α‖qk − qk−1‖∞

I Distance decreases linearly when plotted on a log scale

log ‖qk+1 − qk‖∞ ≤ k logα+ log ‖q1 − q0‖∞

I α is roughly ρ(J∗s )
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Test network

I Simplified version of test network in EPANET User Manual

I Demands s = [0,−150,−150,−200,−150, 0,−300]′ gallons per minute;
reservoir head h0 = 850 feet

I A` = 4.727C−1.852` d−4.871` l`
I d` and l`: diameter and length of circular pipe ` in feet

I C`: Hazen-Williams roughness coefficient (unitless)

Pipe Length (ft.) Diam. (in.) H-W C

1 3000 14 100

2 5000 12 100

3 5000 8 100

4 5000 8 100

5 5000 8 100

6 7000 10 100

7 5000 6 100

8 7000 6 100

9 3000 14 100
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Numerical tests

I Convergence criterion:
‖qk − Ts(qk)‖∞ ≤ 0.1 GPM
(quite small)

I Convergence linear in the iteration
index

I Solution very close to Matlab’s
fsolve

I From the figure:
‖qk+1−qk‖∞
‖qk−qk−1‖∞ ≈ 0.85

I Very close to ρ(J∗s ) = 0.8520
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Conclusions and future directions

I The water flow problem amounts to a nonlinear system in flows and heads

I A fixed-point method is developed when all links are pipes

I Jacobian of the map characterizes the convergence, at least locally

Future directions

I Comprehensive network model: Tanks and pumps

I Other (more accurate) head loss equations

I More sophisticated analysis of the fixed-point map
I Conditions for global convergence
I Uniqueness of solution in a larger region of the q-space
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