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Previous Works

e Employed several parallel paths with large convolutional filters [ Yenigalla’18]

e Proposed a 3-D attention-based convolutional recurrent neural network [Chen’18]

e Proposed a combination of dilated residual network and multi-head self-attention [Li1’19]
e (Quantized the weights of the neural networks [Zhao’19]

e Combined the attention mechanism and the focal loss [Zhong’20]



IoT Devices

e Model Size

e Pecak Memory Usage(PMU)

e (Computational Cost




Optimization of Model

Input Pipeline
Feature Extractor
Classifier
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Input Pipeline
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Window Size
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Feature Extractor

Body Part | : Parallel Paths
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Feature Extractor

Body Part 2:

Training:

y; =%; + 8 = BN, g (z;)
Evaluation:
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Body Part Il : Feature Learning (LFLBSs)
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Classifier

Output = W' f(Input) + b
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Regularizers

e Batch Normalization
e Dropout

e [.2 Regularizer




Comparison

Model on different input lengths and loss function

Table 1: The proposed model performance of different input lengths between CE-Loss and F-Loss on the IEMOCAP (improvised), [EMO-
CAP (scripted+improvised), and EMO-DB datasets in terms of UA(%), WA(%), and F1(%).

Input
Length

IEMOCAP(improvised)

IEMOCAP(scripted+improvised)

EMO-DB

F-Loss

CE Loss

F-Loss

CE Loss

F-Loss

CE Loss

UA | WA | F1

UA | WA | F1

UA | WA | F1

UA | WA | F1

UA | WA | F1

UA | WA | F1

3 seconds

7 seconds

68.37 77.41 76.01

70.78 79.87 78.84

68.42 76.60 75.44
71.51 78.73 77.86

66.10 65.47 65.42
70.76 70.23 70.20

65.81 65.37 65.40

70.12 69.15 69.09

92.88 93.08 93.05

94.15 94.21 94.16




Comparison

Model on IEMOCAP dataset

Table 2: Comparison of the model size (MB) and performance with Table 3: Comparison of the model size (MB) and performance with
those of other methods, on the IEMOCAP (scripted + improvised), those of other methods, on the IEMOCAP (improvised), in terms of
in terms of UA, WA, and F1. ua, Was.and BL.

Han (2014) |2 12.3 4820 5430 - ChemZ0l9) W), 9280 Bl o =~ =

Li (2019) 6.0 €740 - 8.1 Yenigalla2018) [6] 7.20 61.60 7130 -

Zhong (2020) (4]  0.90 7LT2 7039  70.85 St (2017) % 200 0200 T30

L : " e by Zhao (2019) |8 434 61.90 - -
Ours (F-Loss, 7sec) 0.88 70.76 70.23 70.20 Ours (F-Loss. 7sec) 0.88 70.78 79.87 78.84




Comparison

Model on EMO-DB dataset

Table 4: Comparison of model size (MB) and performance in terms
of UA, WA, and F1 with those of other methods on the EMO-DB.

Methods - Size UA(%) WA(%) F1(%)
Chen (2018) 323 82.82 - -
Zhao (2019) |8] 4.34 79.70

0.90 90.10 91.81 90.67

Zhong (2020) I:;
3sec) 0.88 94.15 94.21 94.16

Ours (CE-Loss,




Conclusions

e Experimental results show that the performance of our model is comparable to that of
state-of-the-art models.

e We have proposed a lightweight model that can be used for IoT devices.

e [n addition to being lightweight, the other features of our model, such as PMU and
computational cost are suitable for [oT devices.

e Due to the use of common layers such as convolution, it can be easily implemented
by Tensorflow Lite on devices such as microcontrollers.
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